Y. Avrithis, Y. Kalantidis, G. Tolias, E. Spyrou |
Retrieving Landmark and Non-Landmark Images from Community Photo Collections |
ACM Multimedia 2010, (ACMMM 2010), Firenze, Italy, 25-29 October 2010 |
ABSTRACT
|
State of the art data mining and image retrieval in community photo collections typically focus on popular subsets, e.g. images containing landmarks or associated to Wikipedia articles. We propose an image clustering scheme that, seen as vector quantization, compresses a large corpus of images by grouping visually consistent ones while providing a guaranteed distortion bound. This allows us, for instance, to represent the visual content of all thousands of images depicting the Parthenon in just a few dozens of scene maps and still be able to retrieve any single, isolated, non-landmark image like a house or a graffiti on a wall. Starting from a geo-tagged dataset, we first group images geographically and then visually, where each visual cluster is assumed to depict different views of the the same scene. We align all views to one reference image and construct a 2D scene map by preserving details from all images while discarding repeating visual features. Our indexing, retrieval and spatial matching scheme then operates directly on scene maps. We evaluate the precision of the proposed method on a challenging one-million urban image dataset.
|
25 October , 2010 |
Y. Avrithis, Y. Kalantidis, G. Tolias, E. Spyrou, "Retrieving Landmark and Non-Landmark Images from Community Photo Collections", ACM Multimedia 2010, (ACMMM 2010), Firenze, Italy, 25-29 October 2010 |
[ PDF] [
BibTex] [
Print] [
Back] |