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Computer vision applications often need to process only a representative part of the

visual input rather than the whole image/sequence. Considerable research has been

carried out into salient region detection methods based either on models emulating

human visual attention (VA) mechanisms or on computational approximations. Most of

the proposed methods are bottom-up and their major goal is to filter out redundant

visual information. In this paper, we propose and elaborate on a saliency detection model

that treats a video sequence as a spatiotemporal volume and generates a local saliency

measure for each visual unit (voxel). This computation involves an optimization process

incorporating inter- and intra-feature competition at the voxel level. Perceptual

decomposition of the input, spatiotemporal center-surround interactions and the

integration of heterogeneous feature conspicuity values are described and an experi-

mental framework for video classification is set up. This framework consists of a series of

experiments that shows the effect of saliency in classification performance and let us

draw conclusions on how well the detected salient regions represent the visual input.

A comparison is attempted that shows the potential of the proposed method.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Rapid increase of the amount of video data necessitates
the development of efficient tools for representing visual
input. One of the most important tasks of representation
is selecting the regions that represent best the underlying
scene and discarding the rest. Recent approaches focus on
extracting important image/video parts using saliency-
based operators, which are either based on models
inspired by the Human Visual System (HVS) [21,30,31]
or on models aiming to produce state-of-the-practice
results [14,43,44,51]. Saliency is typically a local measure
that states how much an object, a region or a pixel stands
out relative to neighboring items. This measure has given
rise to a large amount of work in image/frame-based
analysis with interesting results in many applications.
ll rights reserved.
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s).
Nevertheless, the lack of exploitation of spatiotemporal
(space–time) information in most of these methods
renders them not quite appropriate for promoting efficient
representation of video sequences, where inter- and not
intra-frame relations are most important. The concept of
saliency detectors operating in spatiotemporal neighbor-
hoods has only recently begun to be used for spatiotem-
poral analysis with emerging applications to video
classification [17,26], event detection [20,32,39,49] and
activity recognition [20,33].

Most of the saliency estimation methods using bot-
tom–up visual attention (VA) mechanisms follow the
model of Koch and Ullman and hypothesize that various
visual features feed into a unique saliency map [7] that
encodes the importance of each minor visual unit. The
latter work along with the seminal work of Treisman et al.
[4] are the ancestors of these models, since they proposed
an efficient solution to attentional selection based on local
contrast measures on a variety of features (intensity, color,
size, etc.). Itti et al. were among the first to provide a
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sophisticated computational model based on the previous
approach [32]. Tsotsos et al. [22] proposed a different
model for attentional selection that is still based on the
spatial competition of features for saliency and is closely
related to current biological evidence. Nevertheless, the
centralized saliency map is not the only computational
alternative for bottom–up visual attention. Desimone and
Duncan argue that salience is not explicitly represented by
a single map, but instead is implicitly coded in a
distributed manner across various feature maps that
compete in parallel for saliency [16,42]. Attentional
selection is then performed on the basis of top–down
enhancement of the feature maps relevant to a target of
interest and extinction of those that are distracting, but
without an explicit computation of salience. Such ap-
proaches are mainly based on experimental evidence of
interaction/competition among the different visual path-
ways of the HVS [13].

Applications are numerous, since saliency is a quite
subjective notion and may fit with many computer vision
tasks with most of them related to spatial analysis of the
visual input. The computational model of Itti et al. is
currently one of the most commonly used spatial atten-
tion models with several applications in target detection
[30], object recognition [46] and compression [29].
Rutishauer et al. [46] investigate empirically to what
extent pure bottom–up attention can extract useful
information about objects and how this information can
be utilized to enable unsupervised learning of objects
from unlabeled images. Torralba [2,3] integrates saliency
(low-level cues driven focus-of-attention) with context
information (task driven focus-of-attention) and intro-
duces a simple framework for determining regions-of-
interest within a scene. Stentiford uses VA-based features
for demonstrating the achieved efficiency and robustness
in an image retrieval application [14]. Although the
method has been tested on small sets of patterns, the
results are quite promising. Ma et al. propose and
implement a saliency-based model as a feasible solution
for video summarization, without fully semantic under-
standing of video content or complex heuristic rules [51].

Most of the above approaches process the input video
sequence in a frame-by-frame basis and compensate for
temporal incoherency using variants of temporal smooth-
ing or calculating optical flow for neighboring frames. Real
spatiotemporal processing should exploit the fact that
many interesting events in a video sequence are char-
acterized by strong variations of the data in both the
spatial and temporal dimensions. Large-scale volume
representation of a video sequence, with the temporal
dimension being long, has not been used often in the
literature. Indicatively, Ristivojević et al. have used the
volumetric representation for three-dimensional (3D)
segmentation, where the notion of ‘‘object tunnel’’ is used
to describe the volume carved out by a moving object
in this volume [36]. Okamoto et al. used a similar
volumetric framework for video clustering, where video
shots are selected based on their spatiotemporal texture
homogeneity [17].

Nevertheless, this representation has certain simila-
rities to the spatiotemporal representation used recently
for salient point and event detection. These methods use
a small spatiotemporal neighborhood for detecting/select-
ing points of interest in a sequence. Laptev et al. build on
the idea of Harris and Forstner interest point operators
and propose a method to detect spatiotemporal corner
points [20]. Doll0ar et al. identify the weakness of
spatiotemporal corners to represent actions in certain
domains (e.g., rodent behavior recognition and facial
expressions) and propose a detector based on the
response of Gabor filters applied both spatially and
temporally [8]. Ke et al. extract volumetric features from
spatiotemporal neighborhoods and construct a real-time
event detector for complex actions of interest with
interesting results [49]. Boiman et al. [39] and Zelnik-
Manor et al. [33] have used overlapping volumetric
neighborhoods for analyzing dynamic actions, detecting
salient events and detecting/recognizing human activity.
Their methods show the positive effect of using spatio-
temporal information in all these applications.

In comparison to the saliency- and non-saliency-based
approaches, we use the notion of a centralized saliency
map along with an inherent feature competition scheme
to provide a computational solution to the problem of
region-of-interest (ROI) detection/selection in video se-
quences. In our framework, a video shot is represented as
a solid in the three-dimensional Euclidean space, with
time being the third dimension extending from the
beginning to the end of the shot. Hence, the equivalent
of a saliency map is a volume where each voxel has a
certain value of saliency. This saliency volume is com-
puted by defining cliques at the voxel level and use an
optimization/competition procedure with constraints
coming both from inter- and intra-feature level. Overall,
we propose a model useful for providing computational
solutions to vision problems, but not for biological
predictions. In the following sections, we present the
model and elaborate on various aspects including visual
feature modification, normalization and fusion of the
involved modalities (intensity, color and motion).

Evaluating the efficiency of a saliency operator is rather
subjective and difficult, especially when the volume of the
data to be processed is large. Researchers have attempted
to measure the benefit in object recognition using salient
operators [46] or under the presence of similarity trans-
forms [6], but – to the authors’ knowledge – no statistical
results have been obtained yet for saliency extraction
itself. Since any evaluation is strongly application depen-
dent, we choose video classification as a target application
to obtain objective, numerical evaluation. The experiment
involves multi-class classification of several video clips,
where the classification error is used as a metric for
comparing a number of approaches either using saliency
or not, thus providing evidence that the proposed model
provides a tool for enhancing classification performance.

The underlying motivation is that if classification based
on features from salient regions is improved when
compared to classification without saliency, then there is
strong evidence that the selected regions represent well
the input sequence. In other words, we assume that if we
could select regions in an image or video sequence that
best describe its content, a classifier could be trained on
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such regions and learn to differentiate efficiently between
different classes. This would also decrease the depen-
dency on feature selection/formulation.

To summarize our contribution, we propose a novel
spatiotemporal model for saliency computation on video
sequences that is based on feature competition enabled
through an energy minimization scheme. We evaluate the
proposed method by carrying out experiments on scene
classification and emphasize on the improvements that
saliency brings into the task. Overall, classification based
on saliency is achieved by segmenting the saliency
volume, ordering them according to their saliency,
extracting features from the ordered regions, and create
a global descriptor to use for classification. We do not
focus on selecting the best set of descriptors, but we
consider a fixed set of three descriptors (intensity, color
and spatiotemporal orientation) – the features we use to
compute saliency – and focus on showing how to exploit
histograms of these features for scene classification.
Experimental evidence includes several statistical com-
parisons and results that show the classification perfor-
mance enhancement using the proposed method against
established methods including one of our early spatio-
temporal visual attention methods [25,26].

The paper is organized as follows. Section 2 provides
an overview of the proposed model, while Section 3
describes the methodology for evaluating the effect of
Fig. 1. Representation of a video sequence as a spat
saliency on video classification. In Section 4 the perfor-
mance of the proposed model is evaluated against state-
of-the-art methods, while conclusions are drawn in
Section 5.
2. Spatiotemporal visual attention

Attending spatiotemporal events is meaningful only if
these events occur inside a shot. Hence, the input is first
segmented into shots using a common shot detection
technique, which is based on histogram twin comparison
of consequent frames [19]. Each of the resulting shots
forms a volume in space–time, which is composed of a set
of points q ¼ (x, y, t) in 3D Euclidean space. This volume is
created by stacking consecutive video frames in time.
Under this representation, point q becomes the equivalent
of a voxel. Hence, a moving object in such a volume is
perceived as occupying a spatiotemporal area. Fig. 1 shows
a set of frames cropped from an image sequence of a
woman walking along a path. Different views and slices of
the spatiotemporal volume are also shown.

Fig. 2 shows an overview of the proposed model with
all involved modules: feature extraction, pyramidal
decomposition and normalization and computation of
the conspicuity volumes (intermediate feature specific
salient volumes) and of the final saliency one. The
iotemporal volume and three different views.
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following subsections provide an in-depth analysis for
each module.

2.1. Feature volumes

The spatiotemporal volume is initially decomposed
into a set of feature volumes, namely intensity, color and
3D-orientation.
2.1.1. Intensity and color

For the intensity and color features, we adopt the
opponent process color theory that suggests the control of
color perception by two opponent systems: a blue–yellow
and a red–green mechanism [11]. The extent to which
these opponent channels attract attention of humans has
been previously investigated in detail, both for biological
[4] and computational models of attention [50]. The color
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volumes r, g and b are created by converting each color
frame into its red, green and blue components, respec-
tively, and temporally stacking them. Hence, according to
the opponent color scheme the intensity is obtained by

I ¼ ðr þ g þ bÞ=3 (1)

and the color ones by

RG ¼ R � G (2)

BY ¼ B� Y (3)

where R ¼ r�(g+b)/2, G ¼ g�(r+b)/2, B ¼ b�(r+g)/2 and
Y ¼ (r+g)/2�|r�g|/2�b.

2.1.2. Spatiotemporal orientation

Spatiotemporal orientations are related to different
motion directions in the video sequence. In our frame-
work, we calculate motion activity (with no direction
preference) using spatiotemporal steerable filters [48]. A
steerable filter may be of arbitrary orientation and is
synthesized as a linear combination of rotated versions of
itself. Orientations are obtained by measuring the orien-
tation strength along particular directions y (the angle
formed by the plane passing through the t-axis and the
x–t plane) and j (defined on the x–y plane). The desired
filtering can be implemented using three-dimensional
filters G2

y, f (i.e. second derivative of a 3D Gaussian) and
their Hilbert transforms H2

y, f by taking the filters in
quadrature to eliminate the phase sensitivity present in
4
�0,−

2
�,

2
�

2
�0,

Fig. 3. Initial spatiotemporal volume and high-valued isosurf
the output of each filter. This is called the oriented energy

Evðy;fÞ ¼ ½G
y;f
2 � I�2 þ ½Hy;f

2 � I�2 (4)

where yA{0, (p/4), (p/2), (3p/4)}, fA{�(p/2), (p/4), 0, (p/4),
(p/2)} and I is the intensity volume as defined in
Section 2.1.1.

The squared outputs of a set of such oriented subband
produce local measures of motion energy, and thus are
directly related to motion analysis [9,48]. In the case of
axial symmetric steerable filters, used in our model and
proposed by Derpanis et al. [28], the functions are
assumed to have an axis of rotational symmetry.

By incorporating steerable filters locating and analyz-
ing interesting events in a sequence by considering the
actual spatiotemporal evolution across a large number of
frames can be done without the need for, e.g., computa-
tionally expensive optical flow estimation. Fig. 3a shows
neighboring frames of the same video shot, where the
players are moving in various directions. Fig. 3b shows
part of the steerable filters’ outputs. Each image corre-
sponds to the slice of a specific spatiotemporal orientation
corresponding to the 3D frame of Fig. 3a. Although part of
the oriented filters captures accurately the movements in
the scene, there is still a problem of fusing all filter
outputs and producing a single volume that will represent
the actual spatiotemporal movements.

Our model requires a single volume that is related to
the spatiotemporal orientations of the input and that will
4
�0,

4
�,

4
�

aces on various filter outputs (better viewed in color).
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be remained fixed during the proposed competition
procedure. By selecting y and j as in Eq. (4), 20 volumes
of different spatiotemporal orientations are produced,
which should be combined to produce a single one that
will be further enhanced and compete against the rest of
the features. A common strategy, adopted also by Itti et al.
[31], is to produce a normalized average of all orientation
bands. In our case, such a simplistic combination is
prohibitive due to the large number of different bands.
In this work, we use a contrast operator based on principal
component analysis (PCA) and generate the spatiotempor-
al orientation volume V as

V ¼ PCAfEvðy;fÞg (5)

PCA finds orthogonal linear combinations of a set of n

features that maximize the variation contained within
them, thereby displaying most of the original variation
in an equal or smaller number of dimensions sorted in
decreasing order. The common strategy is to use part of
the high variability data to represent the visual input
[12,26]. To fuse the orientation volumes, we first create a
matrix S for the set of n block vectors corresponding to the
n (i.e. n ¼ 20) orientations and compute an n-dimensional
mean vector m. Next, the eigenvectors and eigenvalues are
computed and the eigenvectors are sorted according to
decreasing eigenvalue. Call these eigenvectors ei with
eigenvalues li, where i ¼ {1,y, n}. The n�n0 projection
matrix W is created to contain n0 eigenvectors e1,y,en0

corresponding to the largest eigenvalues l1,y, ln0such
that W ¼ [e1,y, en0] and the full data set is transformed
according to S0 ¼Wt(S�l) so that the coordinates of the
initial data set become decorrelated after the transforma-
tion [42]. Finally, we keep the average of the first two
principal components (the transformed dimensions) that
account for most of the variance in the initial data set [41].
2.1.3. Pyramid decomposition of feature volumes

As discussed above, a set of feature volumes for each
video shot is generated after proper video decomposition.
A multi-scale representation of these volumes is then
obtained using Gaussian pyramids. Each level of the
pyramid consists of a 3D smoothed and subsampled
version of the original video volume. The required low-
pass filtering and subsampling is obtained by 3D Gaussian
low-pass filters and vertical/horizontal reduction by
consecutive powers of two. The final result is a hierarchy
of video volumes that represents the input sequence in
decreasing spatiotemporal scales. Every volume simulta-
neously represents the spatial distribution and temporal
evolution of the encoded feature. The pyramidal decom-
position of the volumes allows the model to represent
shorter and longer ‘‘events’’ in separate scales and enables
reasoning about longer term dynamics.

Hence, a set F ¼ {F‘,k} is created with k ¼ 1,2,3 and
‘ ¼ 1,y, L. This set represents the coarse-to-fine hierarchy
of maximum scale L discussed before with F0,k corre-
sponding to the initial volume of each of the features. Each
level of the pyramid is obtained by convolution with an
isotropic 3D Gaussian and dyadic down-sampling.
2.2. Spatiotemporal feature competition

Several computational variants have been proposed in
the literature for detecting salient regions, i.e. regions that
locally pop-out from their surroundings, with the Differ-
ence-of-Gaussian (DoG) and Laplacian-of-Gaussian (LoG)
being used very often [18,31,35]. In the past, we have used
a simple spatiotemporal center-surround difference (CSD)
operator based on DoG and implemented it in the model
as the difference between fine and coarse scales for a
given feature [24,25]. Nevertheless, most of the existing
models do not count in efficiently the competition among
different features, which according to experimental
evidence has its biological counterpart in the HVS [13]
(interaction/competition among the different visual path-
ways related to motion/depth (M pathway) and gestalt/
depth/color (P pathway), respectively. In this paper, we
propose an iterative minimization scheme that acts on 3D
local regions and is based on center-surround inhibition
regularized by inter- and intra-feature constraints biased
from motion. In our framework, motion activity volume ~V
is obtained by across-scale addition �, which consists of
reduction of each volume to a predefined scale s0 and
point-by-point addition of the reduced volumes

~V ¼ T �
L

‘¼1
V‘

� �
(6)

T is an enhancement operator used to avoid excessive
growth of the average mean conspicuity level after the
addition operation. In our implementation, we use a
simple top-hat operator with a 3D-connected structuring
element.

2.2.1. Energy formulation

We formulate the problem by en energy optimization
scheme. An energy measure is designed, which consists of
a set of constraints related to established notion of
saliency, i.e. regions become prominent when they differ
from their local surrounding and exhibit motion activity.
In a regularization framework, the first term of this energy
measure may be regarded as the data term (ED) and the
second as the smoothness one (ES), since it regularizes the
current estimate by restricting the class of admissible
solutions [5,27]. Hence, for each voxel q at scale c the
energy is defined as

EðFÞ ¼ lD � EDðFÞ þ lS � ESðFÞ (7)

where lD, lS are the importance weighting factors for each
of the involved terms.

The first term of Eq. (7), ED, is defined as

EDðFÞ ¼
XL�d

c¼1

X3

k¼1

Fc;kðqÞ � jFc;kðqÞ � Fh;kðqÞj (8)

where c and h correspond to the center and surround
pyramid scales, i.e. to a coarse and a corresponding finer
scale of the representation. If the center is at scale
cA{1,y, L�d} then the surround is the scale h ¼ c+d with
dA{1,2,y, d}, where d is the desired depth of the center-
surround scheme. Notice that the first element of set c is
the second scale for reasons of low computational
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complexity. The difference at each voxel is obtained after
interpolating Fh,k to the size of the coarser scale. This term
promotes areas that differ from their spatiotemporal
surroundings and therefore attract our attention. If a
voxel changes value across scales, then it will become
more salient, i.e., we put emphasis on areas that pop-out
in scale-space.

The second term, ES(F), is a regularizing term that
involves competition among voxel neighborhoods of the
same volume, so as to allow a voxel to increase its saliency
value only if the activity of its surroundings is low enough.
Additionally, this term involves a motion-based regulariz-
ing term to bias the feature towards moving regions. This
term promotes areas that exhibit both intra-feature and
motion activity. Due to lack of prior knowledge, we define
the surrounding neighborhood Nq to be the set of 26
3D-connected neighbors of each voxel q excluding the
closest 6 3D-connected ones and define the second energy
term as

ESðFÞ ¼
XL�d

c¼1

X3

k¼1

Fc;kðqÞ �
1

jNðqÞj
�
X
r2NðqÞ

raq

ðFc;kðrÞ þ ~VðrÞÞ (9)

2.2.2. Energy minimization

Local minima of Eq. (7) may be found using any
number of descent methods. For simplicity, we adopt a
simple gradient descent algorithm. The value of each
feature voxel Fc,k(q) is changed along a search direction,
SV I (18)
~

SV

C (32)
~

V
~

C (4
~

Fig. 4. (a) Frames from the same swimming sequence; (b)–(c) saliency (SV) a

x ¼ 0.5, respectively; The motion map ~V is the same and the numbers in parenth

min–max normalized for visualization purposes.)
driving the value in the direction of the estimated energy
minimum

Ftc;kðqÞ ¼ Ft�1
c;k ðqÞ þ DFt�1

c;k ðqÞ

DFtc;kðqÞ ¼ � gðtÞ �
@EtðF

t�1
Þ

@Ft�1
c;k ðqÞ

þ m � DFt�1
c;k ðqÞ (10)

where g(t) is a variable learning rate and m a momentum
term to make the algorithm more stable [34].

Given both terms of the energy function to be
minimized, the partial derivative may be computed as

@E

@Fc;kðqÞ
¼ lD �

@ED

@Fc;kðqÞ
þ lS �

@ES

@Fc;kðqÞ

¼ lD � ðjFc;kðqÞ � Fh;kðqÞj þ signðFc;kðqÞÞ � Fc;kðqÞÞ

þ lS �
1

jNqj
�
X
r2Nq

ðFc;kðrÞ þ ~VðrÞÞ (11)

The learning parameter g(t) in Eq. (11) is important both
for stability and speed of convergence. In our implemen-
tation, we use a varying g that depends on the sign of
qE/qFc,k(q) and the current value of Fc,k

t(q)

g ¼
1� x � Ftc;kðqÞ if

@E

@Fc;kðqÞ
X0

x � Ftc;kðqÞ otherwise

8><
>: (12)

We normalize each Fc,k
t to lie in the range [0,1] so that

the value of g lies also in the same range. For this reason, it
can be seen as a coefficient which reduces the value of the
I (24)
~

9) V
~

nd conspicuity maps corresponding to the middle frame for x ¼ 1 and

eses correspond to number of total iterations. (All images are resized and
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increment/decrement to reach quickly the desired solu-
tion. The parameter x controls the size of the learning step
and consequently the rate of convergence and the extent
of the resulting salient regions. Fig. 4 shows neighboring
frames of a swimming sequence along with the derived
saliency (SV) and conspicuity maps. The conspicuity maps
correspond to intensity, color and spatiotemporal orienta-
tion, respectively, and are shown for two different values
of x. All images are from the slice corresponding to the
middle frame of Fig. 4a. For our implementation, we fix
this parameter to x ¼ 1. Practically, few iterations are
enough for the estimate to approach a stable solution as
shown by the numbers in parenthesis in Fig. 4.

2.3. Conspicuity and saliency generation

To compute the final saliency volume, the conspicuity
ones should be appropriately combined. The optimization
procedure we adopt produce noise-free results, and thus
simple addition of the outputs is adequate. We create
conspicuity volumes for the intensity and color features
using the same procedure as in Section 2.2.1. The
conspicuity volume for the intensity feature is obtained by

~I ¼ �
L�d

c¼1
Ic (13)
Fig. 5. Examples of slices from the original volume and the corresponding slices

the saliency volume are generated in order to make the most salient regions evid

reader is referred to the web version of this article.)
while the color one by combining the RG and BY channels

~C ¼ �
L�d

c¼1
RGc þ �

L�d

c¼1
BYc (14)

Finally, a linking stage fuses the separate volumes by
simple addition and produces a saliency volume that
encodes saliency at each voxel as a gray level value

SV ¼ 1
2ð
~I þ ~CÞ (15)

Saliency volumes for a swimming and tennis sequence
are shown in Fig. 5. The red isosurfaces correspond to high
values of the saliency volume and roughly enclose the
most prominent parts of the scenes like the swimmers/
players, the TV logos and score boards.

3. Evaluating the effect of saliency on video classification

3.1. Saliency-based classification

As mentioned in the introduction, evaluating the
performance of a saliency detector is rather subjective.

To the extent of authors’ knowledge there is no
benchmarking data publicly available that fits well with
such kind of evaluation. Nevertheless, we do not attempt
to evaluate attention itself, but rather to measure the
from the computed saliency volume. High-valued isosurfaces (in red) on

ent. (For interpretation of the references to color in this figure legend, the
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effect of saliency detection in a common computer vision
task like classification. We choose to evaluate the
performance of the spatiotemporal saliency method by
setting up a multi-class video classification experiment
and observing the classification error’s increase/decrease
when compared against other techniques. Input data
consists of several sports clips (see Section 4.1), which
are collected and manually annotated by the authors.

Obtaining a meaningful spatiotemporal segmentation
of a video sequence is not a simple and straightforward
task. Nevertheless, if this segmentation is saliency driven,
namely if regions of low (or high) saliency should be
treated similarly, segmentation becomes easier. The core
idea is to incrementally discard regions of similar saliency
starting from high values and watch the impact on the
classification performance. This procedure may seem
contradictory, since the goal of attention approaches is
to focus on high- rather than low-saliency areas. In this
paper, we exploit the dual problem of attending low-
saliency regions. These regions are quite representative,
since they are consistent through the shot and are,
therefore, important for recognizing the scene (playfield,
slowly changing events, etc.). To support this approach,
we have to place a soft requirement: regions related to
background of the scene should cover a larger area than
regions belonging to the foreground. Under this require-
ment, low-salient regions are related to the background or
generally to regions that do not contribute much to the
instantaneous interpretation of the observed scene.

The feature extraction stage calculates histograms of
the primary features used for computing saliency, namely
color, orientation and motion. To keep the feature space
low, we calculate the histograms by quantizing them in a
small number of bins and form the final feature vector. We
use SVM for classifying the data [47]. Given a training set
of instance-label pairs (xi, yi), i ¼ 1,y, l, where xi 2 <

n and
yA{�1,1}l, the SVMs require the solution of the following
optimization problem:

min
w;b;x

1

2
wT wþ C

Xl

i¼1

gi s:t:yiðw
TfðxiÞ þ bÞX1� gi; giX0

(16)

where the training data xi are mapped to a higher
dimensional space by function f and the second term of
Eq. (16) is the penalty term with parameter C. Training
data correspond to the feature vectors extracted from the
salient regions (the length of the feature vector depends
on the experiment) and function f is the radial basis
function (RBF). Parameters for the RBF kernel are selected
by performing a ‘‘grid-search’’ on the regularization
parameter C ¼ {20, 21, 22, 23, 24} using five-fold cross
validation estimation of the multi-class generalization
performance. After obtaining the parameter that yields
the lowest testing error, we perform a refined search in a
shorter range and obtain the final parameter value C that
is used for the classifiers.

To sum up in a few words, the input video sequence is
segmented into one or more regions after discarding a
percentage of high-saliency voxels and histograms of pre-
calculated features are extracted for each of them. Feature
vectors feed an SVM classifier and the outputs of all
methods are compared.

3.2. Evaluation of classification performance

To test the robustness and efficiency of the proposed
model, we compare it against a method based on a simple
heuristic, two methods that share a common notion of
saliency, against our early spatiotemporal visual attention
model and a fifth one, which is based on PCA and has
proven its efficiency in background subtraction ap-
proaches [1,38]. The reason of including the last method
is two-fold: first to confirm the correctness of our
assumption, namely that the background of a scene is
more important in recognizing it (meaning that an
efficient background subtraction technique should lead
to a low classification error) and second, to provide a
state-of-the-art comparison. The PCA-based technique is
composed of an eigenvalue decomposition stage and the
rejection of the eigenvectors that correspond to small
eigenvalues. The main idea is that moving objects are
typically small, so they do not contribute significantly to
the model. Consequently, the portions of a video sequence
containing moving objects cannot be well described by
this eigenspace model, whereas the static portions of the
video sequence can be accurately described as a sum of
the various eigenbasis vectors [38].

Our early visual attention model shared the same
notion of spatiotemporal saliency, but without the feature
competition module. This model has proven its efficiency
in enhancing performance of a video classification system
[26]. The two other saliency-based methods are the state-
of-the-art static saliency-based approach of Itti et al.
[30,31], and an extension using a motion map [22], as
proposed in the past by several researchers [23,32,45].
Both methods produce a saliency measure per pixel. The
static saliency-based approach processes the video se-
quences in a per frame basis. After producing a saliency
map for each frame, we generate a saliency volume by
stacking them together. To be fair, we filter this volume
with a 3D median filter to improve temporal coherency.
The motion map of the extended approach is derived
using the motion estimation technique of Black and
Annandan, which is based on robust statistics [37]. The
same procedure for producing a saliency volume is
followed for the PCA-based technique. For the sake of
completeness, we also provide results of a method that
operates in a heuristic way and is based on the fact that
people pay often more attention to the region near the
center of the view [15]. At each time step, the initial video
volume is incrementally reduced by p% and a classification
error is produced. The reduction is done spatially in an
uniform way, which means that we reduce the extent of
x–y axes from the edges to the center and leave the
temporal dimension intact.

3.3. Experimental methods

In Section 4, we attempt to prove the benefit obtained
using saliency by two different experiments. Each of them
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is carried out on the same dataset and exploits each
methods’ results in a different way. The first approach is
illustrated in Fig. 6(a) and is composed of 3 steps: (1)
discard p% of high-saliency voxels; (2) extract histograms
of pre-calculated features; and (3) feed the features to a
classifier and obtain an error for each p value. The saliency
volume is segmented into two regions, namely a high- and
a low-salient one using Otsu thresholding [40] driven by
the percentage of the high-saliency pixels to retain.
Practically, the volume is iteratively thresholded using a
small threshold step until the desired percentage of
discarded pixels is approximately obtained. At each step,
a salient and a non-salient region are produced. The
feature vector generated from features bound to the less
salient region is always of the same size and is formed by
encoding the color histograms using 32 bins per color
channel (i.e., 96 elements per region), and the motion/2D-
orientation features using 16 bins. The total size of each
feature vector is thus 112.

Intuitively, there exist a number of regions that
represent best the underlying scene. For example, in case
of sport clips, one region may be representative of the
playfield, another one may include the players, the
advertisements, the audience, etc. Each of these regions
corresponds to a single scene property, but all of them
provide a complete scene description. If we follow the
video

Spatiotemporal
Visual Attention

Discard p% of high salient areas
and keep remaining volume

Feature extraction

SVM
Classification

p=10

P<90

p=p+5

yes

Classification
error

no

stop

Fig. 6. Saliency-based classification: (a) based on foreground/ba
reasoning of the previous experiment, we expect that if
the appropriate regions are selected, the classification
error would be further reduced. Hence, the second
experiment segments the saliency volume into a varying
number of regions (# clusters) as shown in Fig. 6b. The
same incremental procedure is applied with the saliency
volume being segmented into more than two regions at
each iteration. After segmenting the input, the resulting
regions are ordered in terms of saliency and the most
salient one is discarded. This scenario has an intrinsic
difficulty, since, if the number of regions is not constant
for each video clip, the size of the feature vector will not
be constant. Thus, direct comparison between vectors of
different clips would not be straightforward. To overcome
this problem, we segment the saliency volume into
pre-determined number of regions using unsupervised
clustering. In this framework, we use a clustering
technique that allows for non-hard thresholding and
labeling. K-means is used to partition the saliency volume
into regions of different saliency. Voxels are clustered in
terms of their saliency value and a predefined number of
clusters are extracted. Afterwards, we order the clusters in
increasing order of saliency, discard the last one, and label
the rest using 3D connectivity. The optimal number of
clusters, in terms of classification error minimization, is
found using ROC curve analysis. At this scenario, 8 bins
video

Spatiotemporal
Visual Attention

Feature extraction

SVM
Classification

#Clusters+=1

# Clusters

Classification
error

Discard region of higher saliency
and keep remaining volume

K-means clustering

ckground detection; and (b) based on 41 salient regions.
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per color channel (i.e., 24 elements per region) and 4 bins
for motion/2D-orientation are used. Hence, the total size
of the feature vector is 32 for each region.
4. Experimental results

4.1. Experimental setup

To demonstrate the potential of the proposed scheme,
we collected 924 video shots from seven different sport
clips. Soccer (SO), swimming (SW), basketball (BA), boxing
(BO), snooker (SN), tennis (TE) and table-tennis (TB) are the
seven classes of shots we use for conducting our experi-
ments (The abbreviations in parentheses are used to present
the classification results in the tables). Most of the clips are
from the Athens Olympic Games 2004. Each class includes
far- and near-field views and frames where all the playfield,
players and part of the audience are present. Additionally,
many clips include minor camera motions (pan, zoom) due
to the diversity of the video clips and the entailed errors in
shot detection. The length of the shots ranges from 5 to 7 s
(E120–168 frames). All clips, each consisting of a single
shot, are resized to have the same spatial dimensions and
manually annotated as belonging to either of the given
classes. The spatiotemporal saliency volume was obtained
using the proposed algorithm. Fig. 7 shows indicative frames
of each class. The third column shows the segmentation of
the saliency mask using automatic thresholding and the
fourth one shows the segmentation of the saliency map into
three regions using unsupervised clustering. The darker
regions correspond to the least salient ones.

The proposed model and PCA-based background sub-
traction along with SVM classification are implemented in
Matlab, while the saliency maps for Itti et al.’s approach are
obtained using the saliency toolbox that is publicly available
[10]. To acquire a better feeling about the results, e.g., video
sequences with the corresponding saliency volumes are
available at http://www.image.ntua.gr/�rap/saliency/.
4.2. Results

The following subsections provide a rigorous statistical
analysis of the results that aid the evaluation/comparison
of the techniques discussed so far. The main criteria are
the precision/recall measures and various statistics on the
classification error e(r), where r stands for the dependent
variable. The statistics and the corresponding equations
are given below

merr ¼
1

v � jrj

X
v

X
r

�ðrÞ Average error of v-fold validation

serr ¼
1

jrj

X
r

�ðrÞ �
1

jrj

X
r

�ðrÞ

 !2

Standard deviation of v-fold validation

MCE ¼ arg minð�ðrÞÞ Minimum classification error

r

s̄err ¼
1

jrj

1ffiffiffi
v
p

X
r

ð�ðrÞ �
1

jrj

X
r

�ðrÞÞ2
 !

Average standard error of v-fold validation

fp=ðtpþ fpÞ Classification error

tp=ðtpþ fpÞ Precision

tp=ðtpþ fnÞ Recall

where tp, fn and fp are the true-positive, false-negative
and false-positive rates, respectively.

4.2.1. Classification based on salient regions

A spontaneous question when dealing with saliency
detection approaches in images/video sequences is how
useful they are; especially when they are based on
subjective measures of saliency determined by current
constrained biological evidence. This section explores the
effect of the proposed model when using it for video
classification.

Fig. 8 shows the classification error plot for all tested
methods. Each point on the graph represents the error at
the specific ratio of discarded voxels and is obtained after
a five-fold cross validation classification procedure. In case
of the heuristic method, the ratio represents the portion of
the discarded regions starting from the borders (see
Section 3.2). The short lines at each point correspond to
the standard error intervals obtained after the cross
validation procedure.

Both Itti et al. and ITTI-motion methods provide similar
results in terms of absolute error after a 30% ratio is
discarded, with the ITTI-motion having higher s̄err

imposing, therefore, higher uncertainty on the results.
Rapantzikos et al. approach performs almost between the
proposed model and the Itti et al.’s one.

The PCA-based approach has stronger fluctuations
(notice the abrupt changes from 10% to 20% and 30% to
40%, respectively), but achieves a slightly smaller classi-
fication error at pE55%. The spatiotemporal saliency
model produces an error that is always smaller than the
rest with each s̄err interval being always smaller. Table 1
provides statistics for all tested methods. Tables 2 and 3
provide the confusion matrices for the PCA and the
proposed methods, respectively, at the ratio, where both
achieve the lowest error (pE55%). Although the global
error improvement is not high, there is an interesting
result that supports our initial claim that the salient
region selection may provide the feature extractor with
regions that represent the video content more efficiently.
Pairs of classes, like basketball–boxing or basketball–ta-
ble-tennis, have similar global characteristics due to the
similar color of the playfield and the Athens 2004
advertisements (blue–white). Careful interpretation of
the confusion matrices reveals the fact that the PCA
method differentiates these pair of classes less efficiently
than the proposed one.

Overall, classification driven by spatiotemporal saliency
results to improved statistics as can be also seen from the
precision/recall values in Tables 2 and 3. Although
differences in MCE magnitude are not tremendous, two

http://www.image.ntua.gr/~rap/saliency/
http://www.image.ntua.gr/~rap/saliency/
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Fig. 7. (a) Original frame; (b) saliency map; (c) thresholded saliency mask; and (d) segmented saliency mask.
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Fig. 8. Experiment I—classification error along with standard error

intervals for all tested methods when varying the size of the discarded

region (ratio represents the percent of discarded high-saliency voxels).

Table 1
Statistics on saliency-based classification.

MCE (%) merr (%) s̄err (%) serr (%)

Proposed method 13.7870. 14 16.58 0.48 2.51

Itti et al. 17.9670.63 20.86 0.67 2.35

ITTI-motion 18.1070.93 21.93 0.93 3.43

PCA-based 16.5670.63 23.83 0.94 6.16

Heuristic 18.6071.1 24.26 0.75 6.09

Rapantzikos et al. 18.0470.3 20.14 0.58 2.27

Table 2
Confusion matrix for the PCA method (pE55%).

SN SW BA BO SO TE TB

SN 40 0 5 0 15 0 0

SW 0 40 0 10 0 0 0

BA 0 0 75 20 0 0 5

BO 0 0 12 30 0 0 0

SO 10 0 5 0 60 5 0

TE 0 0 20 0 10 45 0

TB 0 0 10 0 0 0 40

Precision 0.800 1.000 0.591 0.500 0.706 0.900 1.000

Recall 0.667 0.800 0.789 0.714 0.750 0.600 0.800

Table 3
Confusion matrix for the proposed method (pE55%).

SN SW BA BO SO TE TB

SN 50 0 5 0 5 0 0

SW 0 50 0 0 0 0 0

BA 5 0 75 10 0 10 0

BO 0 0 0 36 6 0 0

SO 0 0 5 0 70 5 0

TE 0 0 5 0 0 70 0

TB 0 0 5 0 0 0 45

Precision 0.909 1.000 0.789 0.783 0.864 0.824 1.000

Recall 0.833 1.000 0.750 0.857 0.875 0.933 0.900

Fig. 9. Classification error along with standard error intervals when

varying the number of regions (error versus number of regions used to

segment the volumes).

Table 4
Statistics on region-based classification.

MCE (%) merr (%) s̄err (%) serr (%)

Proposed method 8.6170.27 10.88 0.43 1.59

Itti et al. 17.5170.69 18.63 0.74 1.27

ITTI-motion 17.0770.48 18.44 0.56 0.66
PCA-based 8.0370.27 16.85 0.78 7.31

Heuristic 13.6571.35 18.46 0.78 4.37

Rapantzikos et al. 13.2170.58 14.60 0.59 1.35
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facts become evident when evaluating the saliency against
the non-saliency-based methods: first, salient-based ap-
proaches seem to provide more consistent results when
varying the selected variable (Fig. 8); second, the proposed
method outperforms all other techniques since it allows
feature extraction from areas bound to actual spatiotem-
poral saliency regions.

The second experiment illustrates the effect on
classification performance when using features bound to
more than one salient region, as explained in Section 3.3.
This experiment corresponds to the flow diagram shown
in Fig. 6b. Fig. 9 shows the obtained classification error
versus the number of segmented regions. The two
approaches based on Itti et al.’s approach perform equally
well without fluctuations. Although, the average error is
almost equal (Table 4), the average standard error for the
static approach is higher. This is an expected result, since
the ITTI-motion approach provides temporally more
coherent regions. The heuristic method reaches a lower
error after an almost sharp downturn (6 regions), but has
high average standard error. The Rapantzikos et al. model
outperforms both previous saliency-based approaches,
while the proposed and the PCA-based techniques per-
form overall better than the rest. The PCA method has a
slightly lower MCE, but has high fluctuations when
varying the number of regions. The PCA method results
in a sparser range of values compared to the denser values
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of the saliency methods, and thus segmentation in a large
number of regions (46 as shown in Fig. 9) leads to not
meaningful areas. This is the reason for the strong
fluctuation in Fig. 9.

5. Conclusions

Saliency-based image and video processing contributes
in several aspects to solving common computer vision
problems. This work presents a computational model for
saliency detection that exploits the spatiotemporal struc-
ture of a video stream and produces a per voxel saliency
measure based on a feature competition approach. This
measure provides evidence about important and non-
important regions in the sequence. The benefits of the
model obtained when using it as a pre-processing step in
video classification are examined. The performance
analysis is based on several experiments that illuminate
different aspects of the method against other established
techniques that either share a common notion of saliency
or not. Two experiments show the improvement in
classification error when selecting only part of the video
stream based on saliency. Future work will focus on the
application of the proposed model to computer vision
problems that could benefit from the proposed spatio-
temporal formulation like generic event detection and
salient point detectors. Precisely, human action recogni-
tion based on salient points/regions is our current goal of
research [52].
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