
The Rendering Pipeline in the Classroom: A Diversified
Approach

Kostas Karpouzis
National Technical University of Athens

Department of Electrical and Computer Engineering
Heroon Polytechneiou 9

157 73 Zographou, Athens, Greece
+301 7722488

Stefanos Kollias
National Technical University of Athens

Department of Electrical and Computer Engineering
Heroon Polytechneiou 9

157 73 Zographou, Athens, Greece
+301 7722488

kkarpou@softlab.ntua.gr stefanos@softlab.ntua.gr

1. ABSTRACT
In this paper we describe an integrated method
of teaching an introductory computer graphics
course. Most such courses are simply “art-
oriented”, that is they focus on getting students
to use modern commercial software, so as to
prepare them for a corresponding career, or
concentrate on the basic concepts of graphics
theory and merely provide a theoretical
foundation, such as simple translations and
projections; in this case, they usually fail to
motivate the class by producing practical
interesting examples. The curriculum that we
propose combines theoretical knowledge of
introductory computer graphics concepts and
techniques with laboratory work in
programming or modelling and animation
exercises. This set of applied laboratory
exercises is relevant to the material taught in
class, but also extends to familiarising students
with the modern uses of computer generated
imagery, such as films, virtual worlds or
medical imaging. The feedback from the
students, combined with their success in the
course, shows that this coupled teaching and
immersion material is by far more interesting

and challenging, while still providing them with
the essential academic background.

1.1 Keywords
Computer graphics education, laboratory applets

2. FRAMEWORK OF THE COURSE
The concepts presented in the textbook and laboratory work
correspond to each one of the separate processes known as
the rendering pipeline for z-buffer and Phong shading [3].
Using a flow of discrete and self contained processes, such as
those that form the pipeline (see Figure 1) guarantees that
each of them can be implemented - and thus taught - on its
own in a real or hypothetical rendering environment.

db traversal 4
modeling I\ Trivial accepl I

I/ lranslormalion + rejecl
Viewing

lranslormalion

Clipping 4
Divide by w,
map lo 3D Raslerizalion,

lighting
Display

viewporl

Figure 1: The rendering pipeline

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

ITiCSE ‘98 Dublin, Ireland

0 1998 ACM l-58113~OOO-7/98/0008... $5.00

The first topic covered in the textbook is vector graphics :
transformations in two or three dimensions, including
orthographic and perspective projections, and clipping. Even
a simple transformation matrix is useful in understanding
concepts that are important to a graphics programmer or user,
such as screen and world space co-ordinates and
transformations between different co-ordinate systems.
Consider a scene with many objects : each is defined in its
own local co-ordinate system, typically by a set of data
structures [8] that describe points or vertices, edges and faces.
When these objects interact, there is a need for a common
definition scheme, so as to facilitate required transformations
: this scheme utilises a world co-ordinate system and a well
defined one-to-one mapping between this and the local
systems. Understanding of this mapping is essential for a
programmer or designer so as to accurately define the
proportions of the objects in the scene. Besides that, using a

139

common matrix representation for each of the transformations
assists in implementing them in a straightforward manner.

Implementation issues regarding the transformation matrices
are rather trivial for an introductory course and, on top of
that, most graphics cards are satisfactory in accelerating such
tasks. A special, but very usual, kind of transformation is the
perspective projection : even though viewing a scene is
usually taken for granted, optimising this procedure is crucial
for minimising rendering times and getting unusual effects,
such as panoramic viewing [Z]. A related issue is that of
clipping and z-buffering : the number of multiplication’s
needed to render an object is at least linear with respect to the
number of the polygons of the object; sorting these polygons
in 3D space and discarding those that are hidden or outside
the view volume, reduces that amount, thereby reducing
rendering times.

The next part of the textbook covers some of the most
common modelling techniques : starting from the simple but
effective constructive solid geometry (CSG) and the popular
boundary representation (b-reps) [4, 91, students are exposed
to ideas on how to mod8el real-world objects, considering any
trade-off issues between quality and size of the
implementation. Such a trade-off is introduced because CSG
and boundary representation techniques can only approximate
detailed curved surfaceis, such as those found on an organic
object. This is a result of the utilisation of small polygonal
facets, instead of actual curved surfaces. Despite this, these
methods of 3D object representation can yield sufficient
results, especially with the use of textures (see Figure 2).
Since the course is targeted towards real-time applications,
complex modelling methods such as spline modelling [l], are
presented briefly.

Figure 2: Texture mapping

The final chapters of the textbook concentrate on texture
mapping and ray tracing [3]. When creating either a
photorealistic scene or a simple virtual world, texturing can
greatly enhance the final result; this is achieved because the
mapping of images onto the surface of an object can help
conceal any modelling shortcomings and recreate me effect of

non-existent geometry. Consider a scene mat consists of a
model of a house : one has the choice of explicitly modelling
the geometry of each window, or texture mapping
photographs of real windows onto to the house model. In
most cases, while the viewer maintains ample distance from
the model, the latter method will be sufficient in terms of
realism; on top of that, one has managed to keep the polygon
count of the model quite low and is thus able to provide the
viewer with real time feedback.

Ray tracing is a very popular, but also time consuming,
method of rendering scenes into images : since this is an
introductory computer graphics course, implementation issues
are not included in the textbook. Instead, students are
presented with the algorithms used in a fundamental ray
tracing scheme, as well as a handful of ideas on how to
extend it. These ideas include the incorporation of coloured
light, instead of just monochromatic, or pre-processing with
bounding volumes in order to speed up the ray tracing
process. Besides resulting in attractive, photorealistic images,
ray tracing algorithms can familiarise a student with
navigating through and viewing 3D scenes, without having to
take into account issues related to modelling or programming.

Figure 3: A Java applet that implements the projection
transformation

Using printed material in order to visualise graphics usually
has its limits, as such material is rather static and not
interactive at all. Hence, the lecturer utilises the Java applets,
written by Patrick Min for Princeton University [S]. These
applets (see Figure 3) help illustrate specific issues related to
the textbook content, such as the significance of the order in
which different transforms are applied to a vector drawing, as
well as more generic notions, such as 3D viewing and 2D line
clipping. The most common use of Java applets is the review
of their result by the students, while the lecturer interacts with
them. However, Java code is structured and easy to
understand, as a result of its being object oriented and cross
platform. This means that it is organised in several distinct
packages, which are reusable and do not contain platform-
specific instructions. Furthermore, one can download both the

140

source and the interpreted. code and use them in a common
web browser, such as Netscape Communicator or Internet
Explorer. Also, if a student feels confident enough to
experiment with the source code and create his own applets,
the Internet can provide him with a rich selection of free, easy
to use Java development tools.

3. LABORATORY EXERCISES
The other parts of the original rendering pipeline (lighting,
texture mapping and rendering) are covered during the
laboratory exercises. Moving from theory to practice
motivates students, because they can actually review the
significance of each process and see the results of changing
different parameters without any programming effort. Besides
that, computer art involves not only scenes with static objects,
but also objects with changing shapes, appearance and
position. This is collectively known as animation and is what
actually brought the public’s attention to computer graphics.
Students are taught how to use real or painted images as
textures on top of objects, in order to achieve realism and
how to use lighting to supply the scene with the appropriate
atmosphere.

Even though this material is starting to move away from a
strictly academic curriculum, it provides the lecturer with the
foundation needed to discuss optimising the texture mapping
scheme or the different lighting models. Course material
consists of a set of tutorials and exercises, which includes
scenes and objects that students are asked to replicate; during
this effort, they master the different techniques that they read
about in the textbook and experience the optimisation issues
discussed. This drill can be realised with the use of either
commercial software (Newtek Lightwave 3D) or the coding
of stand-alone applications, based on the OpenGL or HOOPS
[6] libraries, by the students. This choice is offered because
not all the students that take the course are CS majors; asking
from non-CS majors to create a rendering environment, even
with the simplicity that these libraries offer, would necessitate
tackling both the graphics and the rendering part, as well as
coding and creating the user interface.

During the first sessions of the laboratory exercises, the class
concentrate on modelling and transforming simple
geometrical objects. Getting to know the differenl tools of the
software and the relevant methods of the software library,
makes the students feel confident to delve into advanced
notions, such as spline modelling and texture mapping. At the
end of the semester, most students have come to master the
content of the textbook, mainly because of the practical
results that they experienced during these exercises.

The part of the exercises that regards animation consists
mainly on teaching the use of “bones” to move human-like
object hierarchies and inverse kinematics (IK) procedures 161.

Figure 4: An example 3D application

The notion of bones originates in kinematic physics : they are
used to calculate the transformation of rigid objects that are
parts of a hierarchy. A jointed model, such as that of a human
body, is a collection of different objects that follow certain
rules and restrictions. Hence, knowing the path that parent
objects follow, the use of bones that connect the joints can
help animating the remaining parts as well.

Rendering a realistic animation of a scene which includes
organic objects is a challenging task and can only be taught
through paradigm. Although creating an animation
application from scratch is possible, commercial software
(Kinetix 3D Studio MAX) is employed again, so as to let
students focus on modelling and animating and not on coding
issues.

4. CONCLUSIONS
We present a practical approach to teaching an introductory
computer graphics course to undergraduate students, both CS
and non-CS majors. The textbook and laboratory exercises
are based on the concept of the rendering pipeline, a set of
sequential processes that implement modelling, transforming
and rendering scenes with 3D objects and effects. The
combination of printed material and .laboratory exercises
provides students with both the theoretical background and
the applied prowess to continue research on related areas or,
alternatively, follow a career in producing scientific or
entertainment material. Feedback from the students shows
that this kind of diversity is both challenging and
pedagogical. In addition to that, the majority of the students
that took the course achieved high grades at the end of the
semester, in both the written exam and the evaluation of their
laboratory work, indicating that this combination succeeded
in introducing them to several computer graphics issues.

141

5.

[II

PI

r31

[41

REFERENCES
BartIes, R., Beatty, .I. and Barsky, R. Introduction to
Splines for Use in Computer Graphics and Geometric
Modeling, Morgan Kaufmann, 1987

Black Diamond Inc. What is Surround Video,
http://www.bdiamond.com
Foley, J., Van Dam, A., Feiner, S. and Hughes, J.
Computer Graphics : Principles and Practice, Addison -
Wesley, 1990
Loop, C. Smooth Subdivision Surfaces Based on
Triangles, Master’s Thesis, University of Utah, 1987

[5] Min, P. Computer Graphics Applets,
http://www.cs.princeton.edu/-min/cs426/applets.html

[6] Techsoft Inc., HOOPS Technical Overview,
http://www.hoops3d.com

[7] Thalmann, N. and Thalmann, D., eds. Interactive
Computer Animation, Prentice Hall, 1996,40 - 70

[8] Vince, J. 3-D Computer Animation, Addison - Wesley,
1992,81 - 84

[9] Vince, J. 3-D Computer Animation, Addison - Wesley,
1992,45-81

142

