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Low Bit-Rate Coding of Image Sequences Using Adaptive Regions of Interest

Nikolaos Doulamis, Anastasios Doulamis, Dimitrios Kalogeras, and Stefanos Kollias

Abstract—An adaptive algorithm for extracting foreground a frame period as, for example, when a speaker moves his/her
objects from background in videophone or videoconference ap- head and hands, while keeping the rest of his/her body still [7].
plications is presented in this paper. The algorithm uses a neural In this paper, we propose a new technique for extracting

network architecture that classifies the video frames in regions- ,
of-interest (ROI) and non-ROI areas, also being able to auto- foreground VOP's, e.g., head and shoulder parts of speakers,

matically adapt its performance to scene changes. The algorithm from_ ba_lckground ones in videophone or vid_eoconference
is incorporated in motion-compensated discrete cosine transform applications. Extraction of foreground VOP’s, which are called

(MC-DCT)-based coding schemes, allocating more bits to ROl regions-of-interest (ROI) in the following, is based on a two-
than to non-ROI areas. Simulation results are presented, using the |o\6 neural network classifier that is described in Section I1.

Claire and Trevor sequences, which show reconstructed images The first | | of the cl ifi id imate cl .
of better quality, as well as signal-to-noise ratio improvements of € first level ol the classifier provides an approximate classi-

about 1.4 dB, compared to those achieved by standard MC-DCT fication of VOP’s in foreground and background ones, while
encoders. the second level improves the obtained classification accuracy

Index Terms—Low bit-rate coding, MC-DCT-based coding and adgp_ts to_ scene changes, base(_j on V\_/e_ll-known object
schemeS, neural networks’ regions of interest. ConneCtIVIty Criteria and on an automatic I’etralnlng procedure.
The proposed method is computationally efficient, especially
when compared to conventional segmentation techniques.

In Section Ill, the proposed technique is combined with the

N previous years, efforts for image sequence coding BIPEG-1 video coding algorithm; other coding standards, such

different bit rates have stimulated the generation of varioas H.263, could similarly take advantage of it. The rate control
standards, such as MPEG-1 and MPEG-2 [1]. Transmissiohthe MPEG-1 algorithm is modified so that the quality of
of video signals through conventional or mobile telephonyeconstructed foreground VOP’s is higher than that of back-
however, requires, on the one hand, high compression ratigggund ones. This is achieved by applying coarser quantization
and on the other hand, preservation of good picture qualitg. the latter parts of the video frames and finer to the former
In this framework, the H.263 standard has been generated doves. Simulation results are presented in Section IV, while
improving the video quality provided by the former standardsonclusions and further work are given in Section V of the
at bit rates lower than 64 kbit/s [2]. Moreover, MPEG-4 [3]paper.

[4] aims at developing algorithms for audio—visual coding

in multimedia applications, which allow high compression|; A papTiVE ROI SELECTION USING NEURAL NETWORKS
ratios, interactivity, universal accessibility, and portability of . : .
audio and video content. It adopts the concept of video” neural-network-based scheme is apphed, to image se-
objects (VO’s) and video object planes (VOP’s) of arbitrar uences for extracting fo.regroun.d. (RO,I) VOP's from back-
shape, permitting separate decoding and composition of th ound ones. Each frame is first divided into rectangular blocks

Consequently, some video objects are decoded and preselq ed?: 8x 8 pixels. Appropriate features are then extracted

to the viewers, while some others may be substituted synthegﬁm eqch block and used as inputs to a neural classifier, Wh'.Ch
ones. etermines the class (f_oreground/background) the_ respective
Excluding video games or graphics applications, WheMOck.belon_gs to. A blnglry sggmentaﬂon mask is formed
object segmentation ia priori available, extraction of video next, including t_he class_|f_|er binary ogtputs over all blocks
objects is a rather hard task. Segmentation techniques base f0 e frame, which specifies the locations of foreground and

; ; ' o round VOP’s in the frame, at block resolution. This
spatial and/or motion homogeneity criteria have been propo gro . . ! :
for this purpose [5], [6]. Nevertheless, a physical object, Sugp?grmatlon can be included in MPEG-1 or H.263 compatible

as a person in a scene, contains regions with different coﬁﬂ;COdebrs’ IIrI] or(tj_er to |mpL9;/e tth(f%lr perforﬂa\r)gepiat tlr?w ?'t
and texture (e.g., head, hair, clothes’ color) which can belo el‘:” y e(mjoca(;ng ”_‘é’“; , Itsh Of Itlaregroun . IS than 0
to different segments according to such homogeneity criter ckground, as described In the following section. 1n the case

Moreover, physical objects are not only the moving objects “object-layered” encoders, like MPEG-4, segmentation of

a scene; only a part of a physical object may be moving dumx(gleo ObiecFS at pixel resolution can be achieyed through
postprocessing of the segmentation mask. In particular, blocks

which include object boundaries are first selected as those
Manuscript received September 28, 1995; revised February 20, 1996 M@Cks for which at least one ne|ghb0”ng block does not
April 20, 1998. This paper was recommended by Associate Editor T. Sikolaelong in the same VOP category. Segmentation at pixel
The authors are with the Department of Electrical and Computer Engiaye| is then achieved through edge detection within these
neering, National Technical University of Athens, 157 73 Zografou, Atheng, » L . .. ,
Greece. boundary” blocks, while preserving the continuity of VOP’s
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Fig. 1. Two-level neural network architecture.

The above-described neural network classifier has a tware characteristics of the specific frame may consequently be
level architecture as shown in Fig. 1. The first level consistsed for training the network, providing it with the ability
of a feedforward neural network [8], which generates the sei- classify image blocks which might have been erroneously
mentation mask using the features extracted from each imag@ssified by the first network. The most appropriate additional
block. The second level, also using a feedforward network, clature is color, provided by the dc DCT coefficient of the
further improve the obtained segmentation, exploiting objetttree color components of each block; this is because, within
continuity in the segmentation mask provided by the firthe same scene, color information changes slowly with time.
network and possibly using additional features. Consequently, after being trained with blocks from the first

A zig-zag scanned portion of the ac coefficients of thizame of the new scene, the network will be able to generalize
discrete cosine transform (DCT) of each block comprises tite good performance in the following frames of the scene until
features used by the first network. The number of input nodasnew change of the environment is detected.
of the network equals the number of the ac coefficients usedlLet us now present the decision mechanism. During op-
in the case of binary (foreground/background) classificatioatation of the proposed two-level scheme, the corresponding
the network has two outputs, corresponding to the two possilsiegmentation masks provided by the first and second networks
classes. A set of characteristic examples of blocks belongingwdl be slightly different; their main difference will be in some
foreground (e.g., eyes, mouth, hair, clothes) and to backgrounisclassified foreground and/or background blocks. When a
is selected and used to provide the features for training thew change of the environment occurs, the second network,
network. Since these features are the ac DCT coefficientgyving being trained with color features of the previous scene,
the network learns to perform classification of blocks in theill fail. The first network will still, however, provide an
frequency domain; it then operates as shown in Fig. 1. dpproximate segmentation mask since it has been trained
is, however, possible even for a well-trained network not with the frequency content, and not with the specific color
perform satisfactorily when the operational environment onditions. Consequently, in this case, the difference between
different from the initial training conditions, e.g., due to dhe segmentation masks provided by the two networks will be
change of luminosity or color of clothes or position of personfirge. Automatic detection of such changes is, therefore, possi-
In such cases, the network can misclassify some blocks, thig through a continuous comparison of the masks provided by
providing an approximate, not accurate segmentation of tiee two networks at each frame of the sequence. Retraining of
frame in foreground and background VOP’s. the second network will automatically be performed, using the

For this reason, a mechanism is introduced which detecselected (as described above) data whenever such a change is
in each frame, whether or not such a change of environmelsttected.
takes place. A retraining procedure is used in the former caseThe learning vector quantization (LVQ) algorithm [8] has
which overcomes the above-mentioned misclassifications. Iketen chosen and used for training both networks since it can
us first assume that a frame, in which such a change exidte, implemented in real time, while giving accurate results.
has been detected. We wish to select those blocks of the fralv€) considers the network weights as representatives of the
which have been “correctly” classified to a foreground or to @esired classes. In theth iteration, the algorithm compares
background VOP by the network. The criterion we use is loctie corresponding input, say with the network weights to
connectivity of VOP’s, i.e., the fact that all blocks within &find the weight, sayw., which is closer td. If the classes of
VOP should belong to the same category. According to trigdw,. are the same, thes. is moved closer t@; otherwise,
criterion we select those blocks, all neighbors of which, in iis moved far from it. In particular, the weighi, is adjusted
window of 3 x 3 blocks around them, belong to the samas follows.
class, according to the segmentation mask provided by the If classes oft andw, agree, then
network. The selected blocks form a new training data set
which is used next for training a second feedforward neural we(n+ 1) = we(n) + a(n) (t — we(n)). 1)
network to perform the classification task. This latter network
then will be applied to the same frame, from which the new
training data have been selected. Additional features which w.(n+ 1) =w.(n)—aln) (@t —w.(n)) 2

* Otherwise,
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TABLE |
AVERAGE PSNR RRobpuceD BY THE ROl MC-DCT ALGORITHM COMPARED TO THAT PROVIDED BY CONVENTIONAL
MPEG-1 AND PERCENTAGE OF BITs ALLOCATED TO ROI BLocks IN THE CASES OF CLAIRE/TREVOR SEQUENCES

ROI MC-DCT Encoder MC-DCT Encoder ROI/ Total Bits

Claire Scquence

Bitrate Average | Intra Frame | Inter Frame | Average | Intra Frame | Inter Frame | ROI/Total 1Bits | ROI/Total Bits

(Kbits/s) PSNR PSNR PSNR PSNR PSNR PSNR (Intra Frames) [ (Inter Frames)
16 344 34.6 34.5 33.0 328 33.0 49.0% 16.1%
20 347 34.8 34.7 334 33.0 334 49.7% 20.0%
25 353 35.1 353 34.0 33.5 34.1 50.3% 26.4%
30 36.1 36.1 36.1 34.8 34.2 349 51.1% 31.8%
33 37.1 375 37.0 355 34.8 35.6 52.1% 32.5%
40 38.0 383 38.0 36.1 353 36.2 53.4% 33.9%
45 385 385 38.5 36.8 359 36.9 54.2% 34.8%
50 39.0 38.6 39.0 37.3 36.4 374 54.9% 38.6%
55 39.3 387 39.4 37.7 36.8 37.8 55.7% 42.9%
60 39.7 389 39.8 38.0 37.0 38.1 56.2% 43.9%

ROI ME-DCT Encoder MC-DCT Encoder ROl / Total Bits

Trevor Sequence

Bitrate Average | Intra Frame | Inter frame | Average | Intra frame | Inter Frame | ROI/Total Bits | ROI/Total Bits

(Kbits/s) PSNR PSNR PSNR PSNR PSNR PSNR (Intra Frames) | (Inter Framcs)
16 29.5 295 29.5 28.2 28.8 28.1 62.4% 22.1%
20 29.7 29.6 29.7 283 28.9 28.2 63.0% 25.3%
25 299 29.8 29.9 28.7 29.2 28.6 63.4% 27.1%
30 30.2 30.2 30.2 29.0 29.3 29.0 64.1% 32.9%
35 30.6 30.5 306 29.2 29.5 29.2 65.0% 34.4%
40 31.1 30.8 31.0 29.7 29.7 29.7 66,3% 38.4%
45 31.3 31.3 313 30.1 29.9 30.1 67.4% 42.1%
50 31.6 315 31.6 30.4 30.2 30.4 68,0% 44.5%
55 31.8 317 31.8 30.7 303 30.7 68.6% 46.4%
60 322 31.9 322 30.9 30.6 309 69.1% 47.4%

while the other weights are not modified ash) is a learning or a background VOP. Based on this information, it computes
parameter withd < a(n) < 1. It is generally desirable that the number of bits that should be allocated to the foreground
the learning parametes(n) decreases monotonically withand background VOP’s of each frame, producing a higher
the number of iterations. After several passes through theit rate for foreground VOP’s than conventional MPEG-1, by
input data, the network weights converge and the training rsallocating bits from background to foreground.
completed. In very low bit-rate cases, however, when it may not be
possible to reallocate bits, the ROI-based MC-DCT algorithm
. THE ROI-BASED MC-DCT GODER still forces the foreground areas to be coded at a higher rate
Direct application of the MPEG-1 algorithm, for example, téhan the estimated one in order to preserve the picture quality.
low bit-rate video coding would imply bit allocation strategied his causes an increase of the total bit rate, which starts being
which impose coarse guantization to the whole image. Thiasyident from the beginning of of each GOP, i.e., when coding
however, would heavily deteriorate the quality of the videmtraframes. In the next frame within each GOP (interframe
frames both in the foreground and background VOP’s. coding), the rate control mechanism perceives the increase
In the proposed approach, we have modified the MPEG rait the total bit rate and uses a higher quantization factor
control, preserving its compatibility to the MPEG-1 algorithnfallocating fewer bits) to motion-estimated prediction error so
so as to allocate more bits to foreground objects, where thg to produce the required total bit rate. Decoded foreground
human visual system is more sensitive, than to backgroud®P’s are still of better quality than the ones produced
ones. In standard MPEG-1 coding and for given target By conventional MPEG-1 because the motion-compensated
rates, frame rates, and image sizes, rate control estimatespregliction errors in foreground VOP’s are smaller in the
number of bits to be allocated to coding bfP, and B frames former than in the latter case. This bit rate increase in
within each group of pictures (GOP). In the proposed ROintraframe coding causes the proposed algorithm to provide a
based MC-DCT encoder, the rate control mechanism alsoger PSNR improvement if than in P frames as indicated
exploits information provided by the ROI selection moduldn Table | of the following section. Typical values of the
which indicates whether each block belongs to a foregrou®DP period (10-15 frames) in videoconference applications
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Fig. 2. ROIl-based MC-DCT encoder.

ensure that there is no accumulation of the motion-estimatefithe operational environment that occurred during transition
prediction error. from Claire to Trevor.

Fig. 2 presents the proposed ROI-based MC-DCT codingFig. 3(a) presents frames 30 and 100 of Claire which are
scheme. Apart from the conventional parts of MPEG-1 eulifferent from the ones used for training the network. Fig. 3(b)
coders, such as quantization, motion estimation/compensatisiiows the corresponding binary segmentation masks provided
and entropy coding, a foreground VOP (ROI) selection urlity the first network. For clarity of presentation, when a
has been added, regulating the operation of the rate contsick belongs to background, the values of its pixels are
mechanism. This unit operates in the DCT domain. When tBet to zero (black pixels); foreground blocks are shown as
S) switch activates intraframe coding, a delay occurs whighey are. Fig. 3(c) shows two frames of Trevor with arms in
permits the neural network architecture to perform the framttosed and open position, while Fig. 3(d) shows the respective
segmentation task. When th& switch activates interframe segmentation masks provided by the first network. It can be
coding, the DCT coefficients are computed before the netwasksily seen that the first network generalizes well, providing
operation since they are not available directly from the b#fegmentation masks of good quality. There are, however, some
stream. Using hardware implementations of the fast DCT apflsclassified blocks; in the case of Claire, where the back-
the LVQ algorithm, real-time system operation is feasible. ground is rather uniform, such misclassifications occur in the

foreground VOP which contains some homogeneous regions,
IV. SIMULATION RESULTS such as clothes and forehead. In the case of Trevor, where

The performance of the proposed neural-network-basedckground is less uniform, it contains some misclassifications
system was evaluated using the Claire and Trevor imagé well. Using, however, additional color information within
sequences. These were in QCIF format, with all componer@sscene, and by applying the scene detection and network
having the same size (176 144 pixels). A picture rate of 10 retraining mechanisms described in Section Il, the second
frames/s was used. neural network was able to correct these misclassifications,

The first 24 (3x 8) zig-zag scanned ac DCT coefficientgroviding the images shown in Fig. 4.
of the three color components of each block were used asThe philosophy of the proposed approach differs from that
inputs features to the first-level neural network classifier. Tieé conventional segmentation algorithms. The latter try to find
second network classifier was fed with the above coefficierpatially or temporally uniform, large or small, segments of the
as well as with the corresponding dc coefficients (27 inputsinages [5], [6]. These segments may not, however, correspond
The former network was trained using all blocks of the firgb physical objects in the scene; consequently, pre- or postpro-
and second frames of the Claire sequence. Its performance wessing, using semiautomatic techniques, should be combined
tested using the remaining 148 frames of the same sequencayifis such methods to lead to physical object extraction. In the
well as all frames of the Trevor sequence. The second netwatkrent approach, a highly nonlinear separation of the feature
was also initially trained with the first two frames of Clairespace is performed by the neural network classifiers which can
and was automatically retrained when detecting the changleo account for dynamic changes of the environment.
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(b)

(d)

Fig. 3. (a) Original frames 30 and 100 of Claire. (b) Corresponding segmentation masks provided by the first neural network. (c) Original frames 35 and
130 of Trevor. (d) Corresponding segmentation masks provided by the first neural network.

In the following, we present a comparison between ttelumns of Table | present the proportion of bits allocated
proposed ROI-based MC-DCT and the conventional MPE® ROI blocks in intra- as well as in interframe coding. The
1 algorithm. Table | shows the average peak SNR (PSNR)oportion is smaller in Claire due to the fact that ROI areas
obtained by the two coding schemes for intraframe and inecupy a smaller part of the image. As the bit rate reduces, the
terframe coding of the Claire and Trevor sequences, usipgrcentage of ROI to total bits reduces as well since the high-
150 frames from each sequence. An average improvementrefuency content of foreground is eliminated by the algorithm
PSNR about 1.4 dB has been observEdirames have been so as to achieve the low bit rate, while background regions
only used for interframe coding, with an intraframe distance afe almost saturated. In interframe coding, the percentage of
10. PSNR improvement was larger in casd @dhan P frames bits allocated to ROI is much smaller due to the fact that the
while, on average, it was close to that &f frames, which major part of available bits is allocated to coding of motion
were the majority within each group of pictures. The last tweectors.
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(b)

Fig. 4. (a) Segmentation masks of frames 30 and 100 of Claire provided by the second neural network after retraining with the additional features.
(b) Segmentation masks of frames 35 and 130 of Trevor provided by the second network after automatic retraining with frame 1 of Trevor.

(b)

©

Fig. 5. Reconstructed frames. (a) 21st frame of Claire at 16 kbit/s using ROl MC-DCT and MC-DCT algorithms. (b) Forty-first frame of Trevor at 40
kbit/s using ROl MC-DCT and MC-DCT algorithms. (c) Zooming at the facial area of (a).
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Fig. 5(a) presents the decoded images of Claire providedExamples have been presented which illustrate the per-
by the proposed approach, as well as by the MPEG-1 &rmance of the method when dealing with almost uniform
gorithm, at 16 kbit/s. The quality improvement provided byackground. Based on its training capabilities, the system can
the former technique can be easily discerned. Similar resuktsrn to classify specific types of nonuniform background
hold for Trevor [Fig. 5(b)], where degradation of the qualityo the non-ROI categories. We are currently working on
of background is more visible. A zooming on the head pagixtensions of the neural network system to effectively handle
of Claire at 16 kbit/s is performed in Fig. 5(c), showing theuch cases as well.
good quality achieved by the proposed approach in foreground

VOP’s.
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