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Abstract: A significant challenge in human activity recognition lies in the limited size and diversity 1

of training datasets, which can lead to overfitting and poor generalization of deep learning models. 2

Common solutions include data augmentation and transfer learning. This paper introduces a 3

novel data augmentation method that simulates occlusion by artificially removing body parts from 4

skeleton representations in training datasets. This contrasts with previous approaches that focused on 5

augmenting data with rotated skeletons. The proposed method increases dataset size and diversity, 6

enabling models to handle a broader range of scenarios. Occlusion, a common challenge in real-world 7

HAR, occurs when body parts or external objects block visibility, disrupting activity recognition. By 8

leveraging artificially occluded samples, the proposed methodology enhances model robustness, 9

leading to improved recognition performance, even on non-occluded activities. 10

Keywords: human activity recognition; data augmentation; occlusion 11

1. Introduction 12

Human activity recognition (HAR) is a contemporary research field that intersects key 13

areas, including computer vision, machine learning, and signal processing. The primary ob- 14

jective is the automated identification of human activities based on a series of observations 15

in the temporal and/or spatial domain. This typically entails the detection and recognition 16

of gestures, postures, or movements of the human body, followed by the interpretation of 17

the observed activities. Sensors play a crucial role in this process and can be wearable or 18

installed in the user’s environment [17]. These sensors capture and collect data, including 19

visual, auditory, or motion information, which are then processed to enable automated 20

recognition of human activities. 21

Recent research in human activity recognition (HAR) has predominantly focused on 22

leveraging deep learning techniques [15] to infer conclusions about a subject’s activity. 23

Typical deep HAR approaches follow a generic methodology. The process begins with a 24

subject engaging in an activity (e.g., climbing stairs), and sensors capture measurements 25

related to the motion. The captured measurements undergo processing so as to be used 26

as input to deep trained networks, which analyze data to classify the subject’s activity. 27

HAR approaches may utilize different types of sensors providing various types of data, 28

and the choice depends on factors such as accuracy, cost, power consumption, and ease of 29

integration. Wearable sensors include smartwatches, body-worn sensors, and smartphones, 30

while environmental sensors encompass video/thermal cameras, microphones, infrared, 31

pressure, magnetic, and RFID sensors [6]. However, wearable sensors are not preferred by 32

users due to usability issues [16,24], and overloading environments with multiple sensors 33

can be expensive and intrusive. Consequently, low-cost solutions often rely solely on 34

cameras that detect activities using the subject’s captured motion. 35

Version February 10, 2025 submitted to Sensors https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/sensors


Version February 10, 2025 submitted to Sensors 2 of 14

As is well known, one of the main challenges in recognition tasks approached us- 36

ing deep learning architectures is the limited size of the available training datasets [3]. 37

Specifically, using small datasets to train deep learning models can lead to overfitting, 38

where models learn noise and fail to generalize to new data. The limited diversity in these 39

datasets may not capture real-world variability, resulting in poorer model performance 40

and increased output variance. Furthermore, small datasets often provide insufficient 41

information for both deep learning models and robust model evaluation, leading to over- 42

simplified models that do not accurately represent complex behaviors. To mitigate these 43

issues, several approaches can be applied, such as data augmentation, transfer learning, or 44

even the use of simpler models. 45

In this paper we propose a data augmentation technique that is based on the creation 46

of artificially occluded samples of activities. Specifically, contrary to previous work [32], 47

where we augmented the training data set by incorporating artificially rotated skeletons 48

within the training process, in this one we artificially remove body parts from the skeletons, 49

so as to simulate the effect of occlusion. This approach significantly enhances the training 50

dataset in terms of both size and diversity, enabling the network to learn from a broader 51

range of examples. 52

In the context of human activity recognition (HAR), occlusion refers to the partial or 53

complete blocking of a person, which can prevent the activity from being fully visible and 54

accurately recognized by a trained recognition model [8]. Possible causes of this effect 55

include external objects, such as furniture or other people present in the scene (commonly 56

referred to as “external occlusion”), or the subject’s own body parts, for example, when 57

one arm obscures the other during an action (referred to as “self-occlusion”). Both types 58

of occlusion disrupt the continuity of motion and obscure vital visual cues necessary for 59

accurate classification of actions. This challenge is particularly prominent in real-world 60

scenarios where occlusion frequently occurs [8,35]. The impact of occlusion varies based 61

on its extent, duration, and the importance of the occluded body parts to the action being 62

performed [35]. For example, in an activity such as “kicking something,” the movement 63

of the legs is crucial, and their occlusion can lead to significant errors in recognition. In 64

contrast, the same activity may still be recognizable even with the occlusion of both arms. 65

As the field of human activity recognition continues to evolve, addressing occlusion 66

effectively remains a key area of research. The development of more sophisticated models 67

that can handle various types of occlusions not only improves the accuracy of action 68

recognition systems but also expands their applicability to real-world environments where 69

occlusions are common. In this work, however, we attempt to exploit the effect of occlusion 70

as a means of training more robust recognition models. Unlike typical research that 71

focuses on overcoming occlusions in test scenarios, our novel methodology uses artificially 72

occluded samples during training to augment the dataset, with the goal of improving 73

performance on non-occluded samples. 74

The remainder of this paper is organized as follows: In Section 2, we discuss related 75

work regarding occlusion and data augmentation in the context of HAR. Section 3 presents 76

the proposed methodology for data augmentation using artificially created occluded sam- 77

ples. The evaluation of the proposed approach and the corresponding results are discussed 78

in Section 4. Finally, conclusions are drawn in Section 5. 79

2. Related Work 80

2.1. Occlusion in HAR 81

Recent research on occlusion in human activity recognition (HAR) has increasingly 82

focused on identifying activities even when one or more body parts are not fully visible. 83

For example, Giannakos et al. [8] investigated the effect of occlusion on HAR by artificially 84

creating occluded skeletons. They achieved this by selectively removing structured body 85

parts, such as arms and legs, before classification to assess how these occlusions affect 86

recognition performance. Building on this body of work, at the following additional studies 87

that address the challenges of occlusion in the context of HAR are presented. These studies 88
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primarily explore various methods of simulating or handling the partial visibility of body 89

or skeleton parts to improve the robustness of activity recognition systems. 90

Many existing research efforts in human activity recognition (HAR) rely on extracted 91

skeleton data. To the best of our knowledge, no publicly available datasets contain naturally 92

occluded samples. Consequently, most research studies generate artificially occluded data 93

to evaluate and improve their methods. One common approach for creating such data 94

involves the removal of structured body parts from skeletons, as proposed by Giannakos et 95

al. [8]. 96

Angelini et al. [1] investigated both persistent and short-term occlusion scenarios, 97

simulating occlusions by removing structured sets of skeleton joints that correspond to 98

body parts. To address persistent occlusions, they utilized action prototypes to fill missing 99

information, while for short-term occlusions, they employed interpolation techniques. 100

Similarly, Ghafoor et al. [7] experimented with random and structured occlusions and 101

proposed a temporal dilated convolutional neural network (CNN) that leverages temporal 102

information to estimate missing joints. Vernikos et al. [35] introduced a CNN-based 103

method trained on two-dimensional (2D) representations of three-dimensional (3D) skeletal 104

motion, which included artificially occluded samples in the training process. Their findings 105

demonstrated that incorporating these occluded data samples significantly improved the 106

model’s performance in recognizing activities under conditions where structured body 107

parts were not visible. Lastly, Yang et al. [41] conceptualized the body skeleton as a graph 108

and simulated occlusion by removing sub-graphs. They developed a novel augmentation 109

methodology based on Graph Convolutional Networks (GCNs) to simulate occlusions 110

during training. 111

In addition to generating artificially occluded skeleton data, other research approaches 112

have focused on using still images and videos containing occluded body parts before 113

extracting skeleton joint information. Bian et al. [2] handled occlusions in a multi-camera 114

setup where specific skeletal parts were not visible in certain camera angles. They in- 115

troduced a novel learning method to develop view-invariant representations, robust to 116

such occlusions. Li et al. [21] extracted skeletons from images with occluded body parts 117

and introduced a methodology that tackles the occlusion challenge as a missing value 118

imputation process within a feature matrix. Similarly, Gu et al. [10] simulated occlusions by 119

generating artificial masks and applied temporal gated convolutions to reconstruct missing 120

body information. Cheltha et al. [4] utilized images depicting partially occluded human 121

subjects to extract incomplete skeletons and addressed these occlusions by incorporating 122

multiple hypothesis tracking and recurrent neural networks. Meanwhile, Iosifidis et al. 123

[13] implemented a multi-camera setup surrounding the subject, based on the assumption 124

that occlusions would not simultaneously impact all camera views. Lastly, Li et al. [19] 125

utilized depth images and an action graph to model action dynamics, combined with a 126

bag-of-3D points to represent postures. They simulated occlusions by disregarding specific 127

body areas. 128

2.2. Data Augmentation for HAR 129

Moreover, in recent years, numerous research studies have focused on data augmenta- 130

tion methods specifically designed for human activity recognition (HAR) using extracted 131

skeleton data. In this section, we review related work that employs data augmentation tech- 132

niques on skeleton information. We begin with approaches applied to the spatial dimension 133

of skeletal data. Chen et al. [5] proposed a simple augmentation strategy that includes 134

scaling, translation, rotation, and the addition of random noise. Similarly, Park et al. [28] 135

and Wang et al. [37] applied rotations to generate artificial viewpoints of skeleton data. 136

Rao et al. [30] extended these augmentation techniques by incorporating rotations, shears, 137

reversals (“flips”), Gaussian noise, Gaussian blur, and partial masking applied either to 138

sets of joints or individual joint coordinates. Additionally, Li et al. [20] utilized 3D rotations 139

and Gaussian noise as part of their data augmentation approach for skeleton-based HAR. 140
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In addition to spatial augmentation approaches, several studies have explored data 141

augmentation techniques focusing on the temporal dimension of skeleton sequences. Xin 142

et al. [40] proposed various temporal data augmentation techniques such as time reversing, 143

interpolation, frame shifting, and temporal warping to introduce variations in action timing. 144

Li et al. [20] employed video cropping to alter the temporal context of actions, effectively 145

trimming sequences to create diverse activity durations. Chen et al. [5] utilized interpola- 146

tion to simulate activities performed at different speeds, thereby generating sequences of 147

varying lengths as though performed by different actors. Huynh-The et al. [12] introduced 148

random frame elimination and addition to create artificial activity samples of different 149

durations, thus further diversifying the temporal patterns presented to the model. 150

In recent years, numerous studies have utilized generative architectures, such as gen- 151

erative adversarial networks (GANs), to augment training datasets with artificial skeleton 152

samples and sequences. For instance, Tu et al. [34] and Meng et al. [26] developed LSTM- 153

based generative models capable of creating skeleton sequences that closely resemble real 154

data. Shen et al. [31] introduced the Imaginative GAN, a model designed to approximate 155

the underlying distribution of input skeletal data and generate new skeleton sequences 156

from this learned distribution. Additionally, Wang et al. [38] proposed a method lever- 157

aging contrastive learning, utilizing both skeletal coordinates and velocities to produce 158

augmented skeleton sequences that enhance the diversity of the training data. 159

The proposed approach described in this paper is partially inspired by the works of 160

Vernikos et al. [36] and Angelini et al. [1], both of which included occluded samples in 161

the training process to improve classification performance on occluded data. However, 162

unlike these approaches, our goal is to use data augmentation techniques with artificially 163

occluded samples to enhance classification performance on non-occluded samples. 164

3. Methodology 165

Building upon previous works [27,29,36], our proposed data augmentation training 166

strategy utilizes 3D trajectories of human skeletons as input, which are ultimately repre- 167

sented as activity images created using the discrete sine transform (DST) (see Subsection 168

3.1). However, unlike earlier approaches, which were based on the inclusion of modified 169

training samples while keeping the set of joints intact, the novelty of the herein presented 170

work is the inclusion of artificially occluded samples in the training process – that is, sam- 171

ples where structured sets of joints corresponding to specific body parts have been removed, 172

i.e.,the set of joints has been reduced. 173

3.1. Extraction and Representation of Skeletal Data 174

The Microsoft Kinect sensor [42] has played a significant role in revolutionizing human- 175

computer interaction and 3D sensing technology. It was first released in 2010 by Microsoft, 176

initially for use with the XBOX 360 game console and within its lifetime two versions, 177

namely Kinect v1 and Kinect v2, have been presented. In the context of this work, the 178

Microsoft Kinect is used to capture the raw skeletal joint motion data. Specifically, the 179

Kinect sensor is capable of extracting the 3D positions (i.e., x, y, and z coordinates) of a 180

human’s skeletal joints in real time using its SDK. Furthermore, a structured graph of joints 181

is continuously streamed, where graph nodes correspond to the most representative body 182

parts (e.g., skeletal joints of arms, legs, head, etc.), and graph edges follow the anatomical 183

structure of the human body. A parent–child relationship is implied from top to bottom; 184

for example, Head is the parent of SpineShoulder, which is the parent of ShoulderLeft and 185

ShoulderRight, and so on. In Fig.1, we illustrate the 25 human skeleton joints that are 186

extracted using the Kinect SDK and the v2 sensor; as observed, the latter provides more 187

comprehensive information about skeletal joints. 188

In the context of this work, an activity is defined as the transfer of a subset of joints 189

from point A to point B along a trajectory. To provide a description of such an activity 190

and inspired by the work of Jiang and Yin [15], who utilized raw sensor measurements 191

from inertial sensors, we first create “signal” images by concatenating the signals produced 192
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Figure 1. A human body pose with the 20 and 25 skeletal joints that are extracted using the Microsoft
Kinect v1 (left) and v2 (right) cameras. Joints have been divided into subsets, each corresponding
to one of the five main body parts, i.e., torso (grey), left arm (blue), right arm (red), left leg (green)
and right leg (purple). For illustrative purposes and also to facilitate comparisons between the two
different versions, body parts have been colored using the same colors. Numbering follows the
Kinect SDK in both cases, therefore there exist several differences between the two versions.

by skeletal motion. Specifically, the motion of each skeletal joint in 3D space over time is 193

treated as three independent 1D signals, each corresponding to a coordinate axis. The first 194

step in creating “signal” images is to concatenate the signals produced by skeletal motion. 195

We consider that the motion of each skeletal joint in 3D space over time is treated as three 196

independent 1D signals, each corresponding to a coordinate axis. Therefore, for a given 197

joint j, let Sj,x(n), Sj,y(n), and Sj,z(n) denote the three 1D signals that correspond to its 198

motion along the x, y, and z coordinates, and at the n−th frame, respectively. In the signal 199

image, Sj,x(n) corresponds to row 3 × j − 2. Accordingly, Sj,y(n) and Sj,z(n) correspond to 200

rows 3 × j − 1 and 3 × j, respectively. In this way, the signal image S for a given activity 201

and N joints is created by concatenating the 3 × N signals, resulting in a dimension of 202

3N × Ts, where Ts is the duration of the activity. 203

It is important to emphasize that our focus lies solely on classifying activities into a 204

predefined set of categories. This means that we do not address the task of identifying the 205

starting and ending frames of a given activity in a video. Instead, we treat this segmentation 206

challenge as already resolved. Consequently, our approach operates on pre-segmented 207

video clips, aiming to identify the activity present in each segment, with the assumption 208

that each segment contains at most one activity. Typically, when using publicly available 209

datasets, such a segmentation is provided. 210

However, human activity recognition typically targets real-world scenarios. In such 211

a case, the duration of an activity can vary significantly depending on the individual 212

performing it, and different activities often naturally require different time spans. This 213

introduces variability in segment length, denoted as Ts. Since the herein proposed method 214

uses a Convolutional Neural Network for classification, its input should have fixed size. 215

Therefore, to handle the aforementioned inconsistencies and allow the concatenation of 216

signals, we incorporate a linear interpolation step. This ensures that all activity durations 217

are standardized to a fixed length, Ta. To determine the appropriate value for Ta, we 218

begin by selecting a duration close to the average length of all activities, refining this value 219

through experimentation and fine-tuning. In our work, Ta is set to 159 frames. Additionally, 220

with N = 25, the resulting size of S becomes 75 × 159. An example signal image is 221

illustrated in Fig. 2. 222
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Figure 2. left: a sample signal image; right: the corresponding activity image from activity“hugging
other person.” Figure best viewed in color.

For each signal image S, with dimensions W × H, where S(n, m) represents the pixel 223

at coordinates (m, n), an “activity” image A is generated by applying the two-dimensional 224

Discrete Cosine Transform (DCT) [9,14] to S, as defined by: 225

A(u, v) = auav

W−1

∑
x=0

H−1

∑
y=0

S(x, y)
(

cos
π(2m + 1)u

2W
cos

π(2n + 1)v
2H

)
, (1)

where x ∈ [0, W − 1], y ∈ [0, H − 1], u ∈ [0, W − 1], v ∈ [0, H − 1] and also: 226

au =


1√
W

, u = 0√
2

W , 1 ≤ u ≤ W − 1
(2)

and 227

av =


1√
H

, v = 0√
2
H , 1 ≤ v ≤ H − 1

. (3)

Thus, A = D(S), where D(•) represents the DCT. It is important to note that only the 228

magnitude of the DCT is retained, while the phase information is discarded. The resulting 229

image is further processed by normalization using the orthonormal basis, yielding a 2-D 230

image with dimensions identical to the signal image S. In Fig.2, an example of a signal 231

image from the class “hugging another person” and its corresponding activity image are 232

shown. 233

3.2. Activity Classification 234

The architecture of the proposed CNN is presented in detail in Fig. 3. Specifically, 235

the first convolutional layer filters the 159×75 input activity image with 32 kernels of size 236

3×3. The first pooling layer uses “max-pooling” to perform 2×2 sub-sampling. The second 237

convolutional layer filters the 78×36 resulting image with 64 kernels of size 3×3. A second 238

pooling layer uses “max-pooling” to perform 2×2 sub-sampling. A third convolutional 239

layer filters the 38×17 resulting image with 128 kernels of size 3×3. A third pooling layer 240

uses “max-pooling” to perform 2×2 sub-sampling. Then, a flatten layer transforms the 241

output image of the last pooling to a vector, which is then used as input to a dense layer 242

using dropout. Finally, a second dense layer produces the output of the network. To 243

avoid overfitting, the most popular approach which is also adopted in this work is the 244

use of the dropout regularization technique [33]: at each training stage several nodes are 245

“dropped out” of the network. This way overfitting is reduced or even prevented, since 246

complex co-adaptations on training data are prevented. For training the CNN, the ReLU 247

activation function has been used. Moreover, the batch size has been set to 100 and the 248

Adam optimizer has been used. Also, the dropout was set to 0.55, the learning rate was 249

set to 0.001 and the network was trained for 43 epochs, using the loss of the validation set 250

calculated via cross-entropy as an early stopping method, in order to avert overfitting. 251
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Figure 3. The proposed CNN architecture for recognition of human activities.

The aforementioned architecture has been selected through validation set tuning based 252

on two factors: a) the need to build sufficiently rich representations to allow for effective 253

classification; and b) the restriction of the number of parameters so as to allow flexibility, 254

e.g., for easy deployment of the model in low-cost platforms or mobile devices to perform 255

inference on the edge, in real-life applications of the herein proposed approaches. 256

3.3. Occlusion of Skeletal Data 257

In real-life scenarios, occlusion is a significant factor that hinders the optimal perfor- 258

mance of human activity recognition (HAR) approaches. As described in Subsection 2.1, 259

several research efforts incorporate occluded samples into the training process to enhance 260

recognition robustness. To elucidate the concept of occlusion, consider e.g., an assisted 261

living scenario where one or more cameras are installed in a subject’s environment to 262

capture their appearance and motion for behavior recognition. In such a setting, the living 263

space may contain furniture or other objects behind which actions can occur or other people 264

present, leading to partial or even full occlusion, resulting in a loss of visual information, 265

which can be crucial for recognition even in simple actions. For example, in the activity of 266

“handshaking,” occlusion of the arms would prevent a trained model from recognizing the 267

action. 268

As previously mentioned, the main goal of this paper is to assess whether the inclusion 269

of occluded samples in the training process – specifically, augmenting the training data with 270

artificially created occluded samples – can improve classification performance. However, 271

publicly available datasets, such as those used in this work’s evaluation (see Section 4), have 272

been created under ideal conditions. That is, the subjects are captured in well-illuminated, 273

empty spaces to ensure full-body visibility, resulting in the absence of occluded samples. 274

To simulate the effect of occlusion for the experimental evaluation of our work, we 275

followed the paradigms established by previous studies [8,10,36] which indicated that the 276

torso is a relatively rigid part of the body compared to the limbs, thus most activities are an 277

effect of the motion of arms and/or legs. Moreover, many activities may share a similar 278

torso position but differ in limb movements. Therefore, we removed distinct body parts 279

from the skeleton data—specifically, structured sets of skeleton joints. In the case of the 280

dataset captured using Kinect v2, skeletons comprise 25 joints from which we removed 281

those corresponding to the arms and legs. Specifically, each arm consists of the shoulder, 282

elbow, wrist, hand, thumb, and handtip joints, while each leg includes the hip, knee, ankle, 283

and foot joints. The remaining joints – the head, spine shoulder, spine mid, and spine base – 284

form the torso, which we considered non-occluded in all cases. This decision is supported 285

by our preliminary experiments and aligns with the conclusions of Giannakos et al. [8] and 286

Vernikos et al. [36]. However, in case of datasets captured using Kinect v1, comprising 20 287

joints there are slight differences in the composition of the arms and torso. In such datasets, 288

each arm includes the shoulder, elbow, wrist, and hand joints, while the torso consists 289
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of the head, neck, spine shoulder, spine mid, and spine base joints. Despite these minor 290

differences, we formed five body parts in both cases, as illustrated in Fig. 1. 291

To further simulate occlusion – consistent with the assumptions in [8,36] – we consider 292

occlusion affecting the entire duration of the activity. We intuitively select the following 293

cases of occlusion: (a) one arm; (b) one leg; (c) both arms; (d) both legs; and (e) one arm and 294

one leg on the same side, resulting in a total of eight cases. We assume that when two body 295

parts are occluded simultaneously, they belong to the same side of the body. We consider 296

two augmentation scenarios: augmenting the training dataset using samples where (a) 297

one or both arms or an arm and a leg are occluded (resulting in a dataset 6× larger than 298

the original), and (b) all eight aforementioned occlusion cases are included (resulting in a 299

dataset 9× larger than the original). 300

A visual overview of the proposed augmentation approach is presented in Fig.4. In 301

Fig.6, we illustrate an example of a full skeleton along with all eight cases of artificial 302

occlusion. Additionally, Fig. 5 depicts an example of an activity with the full skeleton and 303

with both arms occluded. This example demonstrates that the occlusion of these two body 304

parts leads to a significant loss of visual information, rendering the performed activity 305

unrecognizable. 306

Signal 
Image

Non-occluded
Skeletons

Microsoft
 Kinect v2

DCT

Train+arms

RGB data

Depth data

Convolutional 
Neural 

Network

Activity 
Recognition

Train+all

Figure 4. A visual overview of the proposed data augmentation methodology incorporating artifi-
cially occluded samples.

4. Experimental Protocol and Results 307

We are not aware of any publicly available datasets that contain real 3D occluded 308

actions. To address this and in order to evaluate the proposed approach, we manually 309

excluded structured subsets of skeletal joints forming body parts (e.g., arms and legs) from 310

three publicly available datasets, that provide 3D skeletal information. To experimentally 311

evaluate the proposed approach, we utilized the following datasets: 312

• The PKU-MMD dataset [22] is a publicly available, open-source benchmark for 3D 313

human motion-based activity recognition. From this dataset, we selected 11 actions 314

(4538 activity samples) that are closely related to activities of daily living (ADLs) 315

[18,25], namely: eating, falling, handshaking, hugging, making a phone call, playing 316

with a phone or tablet, reading, sitting down, standing up, typing on a keyboard, and 317

wearing a jacket. In this case we consider single-view, cross-view, and cross-subject 318

evaluation scenarios [25]. 319

• The SYSU 3D Human-Object Interaction (HOI) dataset [11] focuses on 3D human 320

motion-based interactions between people and objects. It contains 480 activity samples 321

from 12 different activities, specifically: drinking, pouring, calling phone, playing 322

phone, wearing backpacks, packing backpacks, sitting chair, moving chair, taking out 323

wallet, taking from wallet, mopping, and sweeping. The dataset involves 40 subjects 324

interacting with one of the following objects per case: phone, chair, bag, wallet, mop, 325

and besom. Each activity has 40 samples. 326

• The UTKinect-Action3D dataset [39] includes 10 different activities performed by 10 327

different subjects, namely: walking, sitting down, standing up, picking up, carrying, 328
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Figure 5. Example skeleton sequences of the activity “make phone call/answer phone” from the
PKU-MMD dataset, captured using Microsoft Kinect v2. The first row displays the original skeletons,
including all 25 joints (without any occlusion). The second row shows skeletons where joints
corresponding to both arms have been removed, illustrating a case of partial occlusion.

Figure 6. An illustration of a full skeleton and the eight cases of occlusion. The first row displays
occlusions of: right arm, both arms, right leg, and left arm with left leg. The second row shows
occlusions of: left arm, both legs, left leg, and right arm with right leg.

throwing, pushing, pulling, waving hands, and clapping hands. Each activity was 329

performed twice by each subject, resulting in a total of 200 activity instances. 330

Note that from the aforementioned datasets we only used 3D skeleton motion data and 331

disregarded other modalities, while in all cases datasets were split following the protocol 332

imposed by their authors. Also, PKU-MMD was recorded using Microsoft Kinect v2 333

and under three camera viewpoints, while SYSU-3D-HOI and UTKinect-Action3D were 334

recorded using Microsoft Kinect v1 and under a single camera viewpoint. 335

For the experimental evaluation of the proposed methodology, we considered the 336

following training strategies: 337
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a. A baseline approach, denoted as “Full,” where the convolutional neural network 338

(CNN) is trained using only non-occluded samples, following the exact methodology 339

presented in [27]. 340

b. Augmentation of the dataset from case [a.], denoted as “Full+Arms,” by including 341

simulated occlusion examples involving the removal of structured sets of skeletal 342

joints corresponding to the arms. The occlusion cases considered are: (a) left arm; (b) 343

right arm; (c) both arms; (d) left arm and left leg; (e) right arm and right leg. 344

c. Further augmentation of the dataset from case [b.], denoted as “Full+All,” by adding 345

simulated occlusion examples involving the removal of structured sets of skeletal 346

joints corresponding to: (a) left leg; (b) right leg; (c) both legs. 347

In all the aforementioned experiments, we evaluate the performance of classifying 348

non-occluded samples using a convolutional neural network (CNN) trained with activity 349

images. Experimental results for all datasets are presented in Tables 1–3. In all cases, we 350

report the mean accuracy. 351

Table 1. Results on the PKU-MMD dataset. “Full” denotes the case where the training dataset
comprises only non-occluded samples. “Full+Arms” denotes the case where “Full” is augmented
with samples in which one or both arms have been occluded. “Full+All” denotes the case where
“Full+Arms” is further augmented with samples in which arms are always present, but one or both
legs of the same side have been occluded. Numbers denote accuracy, with bold numbers indicating
the best performance among the three training strategies. M, L and R denote activity samples captured
by middle, left and right cameras, respectively.

Experiment Train Test Full Full+Arms Full+All
M M 0.86 0.95 0.85
L L 0.84 0.87 0.88Single-view
R R 0.87 0.94 0.90
M L 0.64 0.84 0.83
M R 0.63 0.81 0.86
L M 0.72 0.81 0.83
L R 0.43 0.55 0.56
R M 0.63 0.85 0.89
R L 0.39 0.40 0.45

M,L R 0.62 0.84 0.82
M,R L 0.60 0.78 0.77

Cross-view

L,R M 0.82 0.94 0.95
Cross-subject M,L,R M,L,R 0.81 0.88 0.75

Table 2. Results on the SYSU dataset. “Full” denotes the case where the training dataset comprises
only non-occluded samples. “Full+Arms” denotes the case where “Full” is augmented with samples
in which one or both arms have been occluded. “Full+All” denotes the case where “Full+Arms”
is further augmented with samples in which arms are always present, but one or both legs of the
same side have been occluded. Numbers denote accuracy, with bold numbers indicating the best
performance among the three training strategies.

Experiment Full Full+Arms Full+All
Single-view 0.58 0.62 0.69
Cross-subject 0.56 0.55 0.60

For the PKU-MMD dataset, in the single-view experiments, we observed the following: 352

for the M and R cameras, the augmentation case “+Arms” exhibited the best accuracy 353

in both cases, with values of 0.95 and 0.94, respectively. However, for the L camera, 354

“Full+All” achieved marginally better accuracy than “Full+Arms,” with an accuracy of 0.94. 355

In all cases, the augmentation strategies demonstrated significantly increased accuracy 356
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Table 3. Results on the UTKinect-3D dataset. “Full” denotes the case where the training dataset
comprises only non-occluded samples. “Full+Arms” denotes the case where “Full” is augmented
with samples in which one or both arms have been occluded. “Full+All” denotes the case where
“Full+Arms” is further augmented with samples in which arms are always present, but one or both
legs of the same side have been occluded. Numbers denote accuracy, with bold numbers indicating
the best performance among the three training strategies.

Experiment Full Full+Arms Full+All
Single-view 0.85 0.90 0.85

compared to the baseline. Moreover, when comparing the average accuracy across all single- 357

view cases, we can argue that “Full+Arms” demonstrated better overall performance. 358

In the cross-view experiments, in most cases, “Full+All” showed better performance, 359

although in several cases the differences were marginal. Nevertheless, the improvement 360

provided by the augmentation step over the baseline approach was clear in all cases. 361

Comparing the average accuracy across all cross-view cases, we can argue that “Full+Arms” 362

again demonstrated better overall performance. Finally, in the cross-subject experiments, 363

interestingly, “Full+Arms” exhibited the best performance, with an accuracy of 0.88, while 364

“Full+All” was significantly lower than the baseline case. 365

With the SYSU dataset, in the single-view experiments, we noticed a significant in- 366

crease in performance. Specifically, in the single-view experiments (Setting 1), without 367

augmentation, the accuracy was 0.58, which increased to 0.69 with the “Full+All” aug- 368

mentation—exhibiting an improvement of 19%. Similarly, in the cross-subject experiments 369

(Setting 2), without augmentation, the accuracy was 0.56, reaching 0.60 with “Full+Arms,” 370

indicating an increase of 7%. Finally, with the UTKinect-Action3D dataset, without aug- 371

mentation, the accuracy was 0.85, which rose to 0.90 with “Full+Arms”, showing an 372

improvement of 5.9%. Interestingly, for this dataset, “Full+All” showed equal accuracy to 373

the baseline case. 374

5. Conclusions 375

In this paper, a data augmentation approach which was based on the artificial occlusion 376

of body parts, and targeted the problem of human activity recognition from video data was 377

presented. Specifically we used 3D skeletons from which we manually removed one or two 378

body parts. We performed experiments where the training data set was firstly augmented 379

using samples where at least one arm was occluded and we further augmented it using 380

samples where at least one leg was occluded. Experiments have been performed using three 381

datasets of human motion activities, which were recorded with single and multi-camera 382

setups. In the latter case, we conducted a three-fold evaluation, i.e., a single view case 383

where the same viewpoint was used for training/testing, a cross-view case where different 384

viewpoints were used for training/testing and cross-subject case, where different subjects 385

were used for training/testing. Actions were represented using activity images created by 386

applying the Discrete Sine Transform on raw motion data and a CNN was trained for each 387

dataset and for each augmentation case. The experimental evaluation indicated that the 388

proposed approach may be successfully used for HAR in most the aforementioned cases, 389

as it is able to provide a significant performance boost over the baseline approaches. 390

We believe that the proposed approach could benefit several HAR tasks which take 391

place in dynamic environments. The proposed algorithm could be deployed e.g., within an 392

assisted living environment (e.g., a smart home), for monitoring activities of daily living 393

(ADLs)[18], or medical-related events that can be recognized by motion and may require 394

some kind of attention or intervention. Another application could be the recognition 395

of human motion within Augmented Reality environments and applications. In such a 396

case, human motion may offer useful cues for assessing user engagement or satisfaction. 397

The latter could be a possible application in the area of retail and marketing, upon the 398

recognition of behaviors and interactions with products, or in the area of sports and 399
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fitness, where it could act as a means of assessing performance. Surveillance and security 400

applications may also benefit, e.g., for the detection of suspicious activities or individuals. 401

Moreover, it could benefit the broader area of human-computer interaction, by recognizing 402

gestures and actions to control interfaces or interact with virtual objects or even provide 403

assistive interaction approaches for people with disabilities, or incorporation of player 404

movements into gameplay mechanics, in the area of gaming. Finally, another possible 405

application could the analysis of classroom activities and student engagement within an 406

education environment. 407
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