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Abstract

Graph mining operations take place on an un-
precedented scale, dictating the need for scalability in
both algorithms and implementation. In the context of
graph partitioning, which tantamounts to community
structure discovery, power iteration clustering (PIC)
is an important and efficient method since it computes
the primary eigenvector of a graph or of the Laplacian
thereof. PIC converges for broad categories of matri-
ces and can be applied to non-normal ones. Func-
tional paradigm aspects like list transformations as
well as capabilities like partially implemented objects
and cached results are offered by the Python module
functools. These can be combined with other recent
major Python concepts such as decorators and lambda
expressions to yield elegant and efficient code. PIC
being a matrix free method can benefit from functools.
As a concrete application a functional implementation
of PIC has been applied to two Twitter graphs with
different characteristics with encouraging results as
evaluated by the Shilouette score and the Gini index.

1. Introduction

Twitter abounds with activity regarding a plethora
of topics ranging from historical or cultural events
to political campaigns. Major yet simple and effi-
cient mechanisms like tweets, retweets, replies, and
mentions promote online activity, frequently driven by
incendiary comments, witty responses, or controversial
hashtags. Out of this activity after a transient phase
communities can be identified based on structural and
functional criteria. These communities may well form
the basis of a lower resolution view of the graph, allow-
ing easier visualization or locating isolated segments.

Table 1. Notation synopsis.

Symbol Meaning First in
△
= Definition or equality by definition Eq. (1)
{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (16)
|S| Set, tuple, or sequence cardinality Eq. (15)
deg (v) Degree of vertex v Eq. (18)
Γ (u) Neighborhood of u Eq. (17)
∥·∥ Vector or matrix norm Eq. (4)
dim (V) (Sub)space dimension Eq. (11)
⊕ Direct (sub)space sum Eq. (10)
det (M) Matrix determinant Eq. (9)
prob {Ω} Probability of event Ω Eq. (12)

One way to obtain graph community structure is
the power iteration clustering (PIC), a linear algebraic
scheme directly deriving from the power method. The
latter is an iterative scheme for approximating the
primary eigenvector of a matrix [1]. The critical obser-
vation is that PIC terminates early during the execution
of the power method, specifically during the transition
from phase of disarray between the elements of the
candidate eigenvector to a phase of an initial order
emerging among them. It is worth mentioning that
PIC has been reported to have been used by Google
to cluster documents and by Twitter for recommenda-
tions1. Also PIC has been applied to scientometrics,
long supply chain management and logistics, maritime
transportation networks, and human omics.

Because of the sheer size of contemporary so-
cial graphs as well as the complexity of the mining
tasks, typically involving attribute aggregation over a
neighborhood of depth more than one, an efficient
implementation is essential. Moreover, the distributed
nature of the information stored in graphs should be
taken under consideration. One way to do this is to
exploit the capabilities of functools2, a Python module

1. https://en.wikipedia.org/wiki/Power iteration
2. https://docs.python.org/3/library/functools.html
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designed for functional programming and higher order
functions. Observe that these capabilities are analogous
to those of the MapReduce programming paradigm.

The primary research objective of this conference
paper is a functional implementation over functools
of PIC for deriving partitionings of Twitter graphs
based on a multitude of attributes. As a secondary
objective, certain remarks about PIC convergence and
initialization are made. The proposed methodology is
versatile enough to be applied to any field as long as
the proper attributes have been identified.

The remaining of this work is structured as follows.
In section 2 the scientific literature regarding PIC,
graph mining, and functional programming is briefly
overviewed. PIC is explained in section 3 and its
functional implementation in section 4. The results
obtained are given in section 5. Possible future research
directions are the focus of section 6. Capital boldface
letters denote matrices, lowercase boldface vectors, and
normal lowercase scalars. Also, capital calligraphic
letters symbolize linear spaces. Technical acronyms are
explained the first time they are encountered in text.
Finally, table 1 summarizes the notation of this text.

2. Previous Work

PIC has been proposed among others in [1] and
expanded in [2]. PIC can be considered as a graph min-
ing technique as data point affinity can be graphically
expressed [3]. High dimensional considerations for
clustering are explored in [4], while parallel versions
are proposed in [5] and in [6]. The connection between
graph neural networks (GNNs) and PIC is explored
in [7]. The relationship between PIC and clustering
is the focus of [8]. In [9] a semi-supervised version
of PIC is derived. PIC variants are compared in [10]
and a parallel pack for power method is described
in [11]. Due to its simplicity the power method has
been extended to numerous embeddings [12] and has
been combined with k-means [13]. Adaptive versions
have been proposed in [14]. Computing eigenvectors
of large sparse matrices can be done in parallel [15],
while a deflated PIC variant is described in [16]. PIC
also has close ties to the field of graph mining [17]
as it can be seen as a simulated walk on a weighted
graph [18].

Discovering graph community structure is an open
problem in social network analysis [19][20], mainly
because of the task complexity [21] and of the multi-
ple and equally valid community definitions [22][23].

Algorithmic approaches include graph convolutional
networks (GCNs) [24], GNNs [25], non-negative ma-
trix factorization [26], genetic algorithms [27], and
non-linear optimization [28]. With the advent of graph
signal processing [29] interest shifted to community
discovery with signal processing methodologies like
community aware modularity [30] and polar decompo-
sition [31]. Applications include graph databases [32],
knowledge graphs [33], and multiview [34], data point
density [35], and biomedical document clustering [36].

Functional data structures [37] and programming
languages [38] have come a long way towards becom-
ing an alternative for large scale computing [39]. A
prime exaple is Scala [40] which can be used to write
applications over distributed processing environments
such as Spark [41]. Although Python is not a purely
functional language, it supports functional program-
ming in a proper Pythonic way [42]. The way lambda
expressions in Python can form the basis for a quantum
computing language are explored in [43].

3. Algorithmic approach

3.1.Power iteration clustering

The similarity or affinity matrix A of a set of n
data vectors xk is elementwise constructed as shown in
equation (1). Depending on the concentration of values
of the normalized similarity metric g (·, ·), matrix A
typically is diagonally dominant or close to it.

A [i, j]
△
=

{
g (xi,xj) , i ̸= j

1, i = j
∈ [0, 1]

n×n (1)

As a concrete example, consider a set consisting
of four vectors numbered from x1 to x4. Then, the
similarity matrix A has the form of equation (2).

A=

 1 g (x1,x2) g (x1,x3) g (x1,x4)
g (x1,x2) 1 g (x2,x3) g (x2,x4)
g (x1,x3) g (x2,x3) 1 g (x3,x4)
g (x1,x4) g (x2,x4) g (x3,x4) 1


(2)

The power method (PM) is an iterative linear alge-
bra technique for computing the primary eigenvector s1
of a matrix A, namely the eigenvector corresponding
to the eigenvalue with the largest magnitude λ1. In
case its algebraic multiplicity is more than one, then
PM converges to the eigenvector with the strongest
component in the starting vector. This, along with



the requirement that the latter contains at least a
component of the (or any) primary eigenvector, leads to
a strategy of a small set of orthogonal starting vectors.

In view of the interpretation of the affinity matrix
as a graph adjacency matrix, a PM or PIC iteration as
shown in algorithm 1 simulates one step of a walk on
the graph. In this sense PIC works akin to the way a
Markov chain works and the normalized eigenvector
approximation corresponds to an approximation to its
stationary distribution under ergodicity assumptions.
Said eigenvector is positive as a result of the Perron-
Frobenius theorem [44] and can reveal the cluster
structure. Also it has connections to graph Laplacian.

g(x1,x2)

g(x1,x3) g(x2,x4)

g(x3,x4)

g(x1,x4)

g(x2,x3)

1 2

3 4

Figure 1. Graph from affinity matrix.

PIC, shown in algorithm 1, is based on PM. The
critical difference between these two methods is that
PIC terminates earlier and more controlled than PM
based on a set of criteria derived from mechanics as
shown in equations (5), (6), and (7) below.

Algorithm 1 PIC outline
Require: Matrix A, termination criterion τ
Ensure: Obtain a primary eigenvector approximation

1: if random initialization is required then
2: initialize x[0] as in (9)
3: else
4: read starting point x[0]

5: end if
6: normalize x[0] as in (4)
7: repeat
8: compute u[k] as in (3)
9: normalize u[k] as in (4)

10: replace x[k] with u[k]

11: until τ is true
12: return u[k] as s1

PIC relies on repeated applications of A on x and
normalization of the result as shown in equations (3)
and (4). The result of the latter is the candidate primary

eigenvector of the current iteration. Since the matrix-
vector multiplication of (3) is the most computationally
expensive operation of PIC, it should be optimized.
This is indeed the focus of a large body of research.

u[k] = Ax[k] (3)

The unit length normalization of equation (4) en-
sures numerical stability and alleviates the effect of
successive matrix multiplications keeping only the
eigenvector approximation direction.

u[k] = u[k]/
∥∥∥u[k]

∥∥∥
2

(4)

PM undergoes four phases as listed below. PIC
terminates once the second one is reached.

• Initially, the values of vector u[k] are in disar-
ray and convergence is relatively slow.

• For a few iterations the values of u[k] are
clustered and convergence slows down.

• After that u[k] converges rapidly to the pri-
mary eigenvector of the input matrix A.

• Once u[k] has converged to the primary eigen-
vector, which is a stationary point.

Observe that algorithm 1 is matrix-free, like the
Lanczos and the conjugate gradient algorithms, in the
sense that A need not be explicitly known. Instead,
it suffices that there is way to directly or indirectly
compute (3). This is useful when A has a special
structure, when for instance is a filtering matrix, it
can be expressed as a product of Givens rotations
[45] or Householder reflections [46], or is (approxi-
mately) banded as in the discretization of differential
equations. Given that most social media accounts tend
to frequently interact with a relatively small number
of other accounts, then the affinity matrix will be
sparse and approximately banded. The reverse sym-
metric Cuthill-McKee algorithm can reveal this struc-
ture. Common mechanisms for obtaining the result of
(3) are linear functionals, probabilistic approximations,
low rank approximations, incomplete factorizations,
and preconditioned versions of A. Such mechanisms
reduce the memory or complexity requirements. This
may be particularly attractive in distributed or parallel
environments where communication between compu-
tational nodes is the primary bottleneck factor.

PIC convergence relies on the spectral properties
of A, and specifically on gap between successive
eigenvalues. When the latter are clustered, then the



power method is significantly accelerated. However,
this information is typically inaccessible or too expen-
sive to obtain. In this case, the condition number or
an estimation thereof, such as the Hager method, can
serve as a crude indicator of the convergence rate. The
eigenvalues can be computed in a number of ways
such as the Rayleigh quotient and the characteristic
polynomial of the companion matrix.

The criterion τ is critical for PIC to stop at the
second phase as stated earlier. To this end, the elemen-
twise speed and acceleration during the k-th iteration
as shown respectively in equations (5) and (6).

v[k,j]
△
=
∣∣∣u[k] [j]− u[k−1] [j]

∣∣∣ (5)

Similarly the acceleration is the elementwise abso-
lute second order difference of u[k].

a[k,j]
△
=

∣∣u[k] [j]− 2u[k−1] [j]− u[k−2] [j]
∣∣

2
(6)

The overall acceleration during a given iteration
shown in equation (7) is computed as the harmonic
mean of the elementwise accelerations since it can
handle very small or zero values and also it is less
prone to outliers compared to the arithmetic mean.

a[k]
△
=

n∑n
j=1

1

a[k,j]

(7)

PIC can also be applied to non-normal operators,
including matrices which do not commute with its
transpose. In this case convergence is achieved in the
sense that for a matrix N the primary eigenvector y
and eigenvalue µ there exists a scalar β such that:∥∥∥∥Nky

µk
− βy

∥∥∥∥ → 0 (8)

Given algorithm 1, a reasonable question is what
constitutes a good starting vector. One solution is to
select a random vector as this will not have an effect on
the convergence itself as long as this starting point is
not perpendicular to the space spanned by the primary
eigenvector of the distance matrix. The bigger this
component is, the quicker the convergence. One way
to do this use a multivariate Gaussian distribution with
mean vector c and covariance matrix C as shown
in equation (9). The Gaussian distribution has the
maximum differential entropy among all distributions

with the same covariance matrix, thus it can explain
the largest possible number of probabilistic scenarios.

x[0] ∼ 1

((2π) det (C))
n/2

×

exp
(
− (x− c)

T
C−1 (x− c)

)
(9)

A scheme to minimize the probability of selecting
an inappropriate random starting point is as follows.
Let W be the subspace generated by the primary
eigenvector of A of algorithm 1. Then Rn is the
direct sum of W and its perpendicular subspace W⊥

generated by the remaining eigenvectors as in (10).

Rn = W ⊕W⊥ (10)

Given (10) it follows immediately that as in (11):

n = dim (W) + dim
(
W⊥) = 1 + (n− 1) (11)

Let p0 be the probability of selecting an initial
random vector perpendicular to subspace W as in (12).

p0
△
= prob

{
s[0]⊥W

}
(12)

In order to achieve a lower probability than that of
equation (12), d random starting points can be selected
and stacked in a n× d matrix S[0] as in (13).

S[0] △
=

[
s
[0]
1 s

[0]
2 . . . s

[0]
d

]
, d ≪ n (13)

The probability q0 that all d starting points belong
to W⊥ is computed as in equation (14). When d is
relatively large and p0 is sufficiently small, then the
following approximation is satisfactory:

q0 =

d∏
k=1

p0 ≈ e−dp0 (14)

In this work a single starting vector has been used
in the PIC to approximate the primary eigenvector.

3.2.Attributes and metrics

Matrix A is elementwise constructed by the com-
posite vertex distance metric g (·, ·) shown in equation
(15). Said metric is based on a set of individual metrics
h, over which the sum of (15) ranges over. The trans-
formed metric h̃ is dervived from the corresponding
h through (21). The members of h are built on easy
to compute Twitter attributes collected for each vertex.



Observe that the mathematical formulation of equation
(15) can be directly cast in functional programming
code similarly to the examples of section 4. Moreover,
the proposed approach can be extended in a straightfor-
ward manner to an arbitrary number of vertex distance
metrics, capturing thus critical structural graph aspects.

g (u1, u2)
△
=

1

|H|
∑
h

h̃ (u1, u2) , h ∈ H (15)

The metric set H consists of the metrics explained
in equations (17) to (20). Each metric has been nor-
malized as shown in equation (21).

h
△
= {ha, hc, hr, ht} (16)

The Adamic-Adar similarity metric ha for u and v
is based on information theory principles. In particular,
it is the (17) is the average inverse logarithm of the
degree of the vertices in their common neighborhood.
Observe that all metrics therein are symmetric.

ha (u1, u2)
△
=

∑
s∈{Γ(u)∩Γ(v)}

1

ln |Γ (s)|
(17)

The attachment metric hc of (18) is a measure of
the connection potential between a pair of vertices. It
can be computed functionally operations as only the
length of an adjacency list needs to be computed.

hc (u1, u2)
△
= deg (u1) deg (u2) (18)

The harmonic mean of the followers-to-following
ratios r1 and r2 of any two accounts u1 and u2 re-
spectively is an affinity metric evaluating the influence
of both accounts. The harmonic mean tends to smooth
outliers and as stated earlier is less prone to numerical
errors. Alternatively, the logarithms of said ratios can
be used in order to quantify the affinity in the order of
magnitudes of the ratios and balance large differences.

hr (u1, u2)
△
=

2
1

r1
+

1

r2

= 2
r1r2

r1 + r2
(19)

The last metric ht is the Tanimoto similarity coef-
ficient between the hashtag sets T1 and T2 of vertices
u1 and u2 respectively. This is a functional metric
indicating the functional coherency between them.

ht (u1, u2)
△
=

|T1 ∩ T2|
|T1 ∪ T2|

=
|T1 ∩ T2|

|T1|+ |T2| − |T1 ∩ T2|
(20)

The second form of the Tanimoto coefficient comes
from Venn diagrams and relies only on set intersection
and cardinality. Both can be efficiently computed or
estimated with set cardinality estimators [47].

h̃ (u1, u2)
△
=



exp (h (u1, u2))∑
(u1,u2)

exp (h (u1, u2))
, similarity

1− exp (h (u1, u2))∑
(u1,u2)

exp (h (u1, u2))
, distance

(21)
The PIC matrix relies heavily on the affinity between
vertex pairs. To achieve that, the transformed metric
h̃ is computed as in (21) depending whether metric h
computes distance or affinity.

4. Functional Implementation

Graph operations can be naturally expressed in
functional programming since they contain recursive
higher order patterns and frequently entail list trans-
formations. This leads to elegant and efficient code.
Moreover, functional programming techniques are the
basis of the MapReduce paradigm which lies at the
core of Hadoop. On the contrary, the paradigm of
Apache Spark is that of directed acyclic graphs (DAG).

In Python functional methods and higher order
functionality are provided by the functools module.
Higher order functions accept at least one function as
an argument or return a function. The main functional
method is reduce which performs transforms lists like
adjacency lists. For instance the entropy of a vector
excluding zero entries is computed as follows.

import f u n c t o o l s as f
import numpy as np

v a l s = d . v a l u e s ( )
H = f . reduce ( lambda H, p : \

H−p∗np . l og2 ( p ) i f p e l s e H,\
v a l s , 0 )

Linked data may come from any iterable such as
a yield statement or from the values of a dictionary
within a function. For instance, the following segment
relies on a generator to count how many vertices of an
undirected graph have a degree equal to one.



import f u n c t o o l s as f

def row gen ( a d j ) :
f o r row in range ( a d j . shape [ 0 ] ) :

y i e l d a d j [ row ]

y = f . reduce ( lambda x , r : \
x+1 i f (2 == sum ( r ) ) \
e l s e x , row gen )

Other Python concepts can be combined with the
functional tools. A lambda expression can act as a
lightweight constructor. Decorators can alter computa-
tion and caching results speed up computations.

5. Results

PIC has been applied to two Twitter graphs with
the functional and structural attributes of table 2 taken
from [31]. The two graphs are the following:

• The US2020 graph was taken from US politi-
cal Twitter during a polarized and heated Pres-
idential Election. It has mostly inflammatory
comments and intense arguments.

• The 1821 graph was extracted from Greek po-
litical Twitter. It consists mainly of celebratory
and positive tweets, relaxed conversations, and
occasional but short arguments.

The results are shown in table 3. Therein clustering
quality is evaluated in terms of the Gini index and
the entropy of the hashtags in each cluster as well as
the Shilouette score average and maximum intercluster
distances. The entries are normalized by dividing with
the maximum respective value.

The Gini index for the hashtag distribution in each
category is shown in (22). Therein fk,i is the frequency
of the i-hashtag in the k-th cluster and nk the total
number of unique hashtags in the k-th cluster.

gk
△
=

∑nk

i=1

∑nk

j=1 |fk,i − fk,j |∑nk

i=1

∑nk

j=1 fk,i

=

∑nk

i=1

∑nk

j=1 |fk,i − fk,j |
2nk

∑nk

i=1 fk,i
(22)

From table 3 several conclusions can be drawn.
First, it is evident that PIC outperforms the two
benchmarks. Therefore, PIC helps discovering latent
structure in the dataset. Moreover, the Shilouette score

is systematically stricter than intercluster distance,
which is consistent with previously reported results.
Additionally, the fractured and polarized nature of the
US2020 graph resulted in less compact clusters.

6. Conclusions and future work

This conference paper focuses on finding Twitter
communities with power iteration clustering (PIC), an
iterative clustering method with close ties to graph
mining operating on the affinity matrix of the dataset.
Among its advantages are scalability, parallelism, flex-
ibility, and matching the semantics of the underlying
field through the appropriate selection of similarity
metrics. The proposed methodology has been applied
to two Twitter graphs with different activity character-
istics with very encouraging results with respect to two
well-known clustering algorithms.

This work can be extended in a number of ways.
First and foremost, more affinity Twitter metrics can
be used. This will be of interest to policymakers and
stakeholders. Additionally, PIC can be applied to larger
datasets in order for its scalability to be experimentally
evaluated. Finally, PIC variants for sparse affinity ma-
trices should be developed to accelerate computations.
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