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Abstract The rapid expansion of digital medical imaging technologies demands
advanced tools for efficient and accurate image analysis. This research introduces
a novel approach to medical image captioning, integrating Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) to enhance the au-
tomatic generation of descriptive text for medical images. Our proposed model
exploits the robust feature extraction capabilities of CNNs alongside the advanced
sequential data processing of RNNs. We incorporate an attention mechanism that
selectively focuses on diagnostically significant areas within images, thereby im-
proving the relevance and accuracy of the generated captions. The effectiveness
of our model was validated using an extensive set of evaluation metrics, including
BLEU scores for linguistic quality and traditional classification metrics for accu-
racy. Results indicate that our model significantly outperforms existing systems
in syntactic coherence and semantic accuracy, making it a valuable tool for aiding
clinical decision-making and enhancing medical documentation.
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1 Introduction

Medical imaging is fundamental to modern healthcare, providing essential insights
into the human body’s structure and function through non-invasive techniques
such as X-rays, Magnetic Resonance Imaging (MRI), Computed Tomography
(CT), and histopathological slides [15, 16]. With the evolution of imaging technol-
ogy, there has been a surge in the volume of digital medical images, necessitating
sophisticated computational tools to support accurate diagnostic decisions. The
integration of Artificial Intelligence (AI) and Deep Learning (DL) into medical
imaging represents a transformative shift in diagnostic practices, enhancing the
precision and efficiency of patient care [4, 10].

The complexity of medical images poses significant challenges in clinical set-
tings, requiring expert interpretation to inform effective diagnosis and treatment
plans. For instance, radiologists examine CT scans for subtle disease indicators
such as early-stage cancers. At the same time, pathologists must detect cellular
anomalies in histopathological slides crucial for diagnosing conditions like cancer
and inflammatory diseases [13, 17].

While technological advancements have enhanced image resolution and detail,
aiding in more accurate diagnoses, they have exponentially increased the data vol-
ume, potentially overwhelming healthcare professionals. For example, databases
like the Digital Database for Screening Mammography (DDSM) and the Interna-
tional Skin Imaging Collaboration (ISIC) contain extensive collections of images
that require meticulous analysis to identify critical features indicative of diseases
such as breast cancer and melanoma [14, 28].

The manual interpretation of these images is labour-intensive and susceptible
to human error. The growing demand for medical imaging services, compounded by
a shortage of trained specialists, underscores the urgent need for automated tools
to provide timely, accurate interpretations, mitigating the risks of diagnostic delays
and errors. Recent AI breakthroughs, particularly in deep learning, have demon-
strated significant potential in automating tasks such as classification, detection,
and segmentation in medical image analysis [7]. Extending these advancements
to the automatic generation of descriptive texts for medical images—a medical
image subtitling process—can significantly enhance healthcare delivery. This ap-
proach merges image analysis with Natural Language Processing (NLP) to produce
interpretable, content-rich descriptions crucial for clinical practice [20, 29].

Nonetheless, the variability and complexity of medical images pose substan-
tial challenges to model generalizability and accuracy. Models effective on specific
datasets, such as chest X-rays, often falter under different conditions or patient
groups, leading to misdiagnoses and inappropriate interventions [6, 10].

This study introduces a novel, robust model that combines Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks (RNNs) to generate medical
image subtitles. Our model utilizes CNNs for extracting detailed visual features
and integrates bidirectional LSTM layers within the RNN to formulate coherent,
contextually relevant captions [8, 25]. An attention mechanism is also employed
to focus dynamically on diagnostically significant image regions, improving the
relevance and accuracy of the output [18, 31]. The efficacy of our model is thor-
oughly evaluated through quantitative metrics like BLEU scores and qualitative
assessments, showcasing its superior performance in generating precise, consistent,
and clinically pertinent medical image subtitles over existing models.
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The remainder of this paper is organized as follows: Section 2 reviews the re-
lated work and the development of techniques in medical image processing and
the integration of AI technologies. Section 3 details the methodology employed,
describing the architectural design and functionalities of the proposed models.
In Section 4, we elaborate on the implementation specifics, including the dataset
overview, training procedures, and evaluation metrics. Section 5 presents a thor-
ough experimental evaluation of our models, showcasing their performance against
established benchmarks. Finally, Section 6 concludes the paper with a summary
of findings and an outline of future research directions.

2 Related Work

Medical image analysis is crucial in healthcare, offering vital insights into the hu-
man body through various imaging modalities, each uniquely enhancing clinical
practices and medical research. X-ray imaging, one of the earliest techniques, is
essential for examining skeletal structures and detecting lesions. Magnetic Reso-
nance Imaging (MRI) provides detailed views of soft tissues and the central ner-
vous system, which is critical for diagnosing tumours and neurological disorders.
Computed Tomography (CT) offers images of complex body structures, indispens-
able for diagnosing cerebral and vascular diseases. Meanwhile, histopathological
slides provide detailed cellular and tissue information, crucial for diagnosing di-
verse pathological conditions [5].

Integrating AI into medical imaging marks a transformative era. Advanced
machine learning models, intense CNNs and RNNs enhance the automatic analysis
and interpretation of medical images, boosting diagnostic accuracy and efficiency.
For instance, CNNs excel in pattern recognition within X-rays, facilitating rapid
fracture identification, while RNNs effectively track disease progression through
sequential MRI scans. Research continues to advance these models’ accuracy and
processing speeds, employing larger, more diverse datasets and techniques like
transfer learning. This approach utilizes pre-trained models adapted with minimal
training for specific applications, pivotal in personalizing diagnostic tools [4, 27].

However, each imaging modality comes with challenges. X-ray imaging, while
crucial for diagnosing conditions from fractures to lung diseases, struggles with
overlapping structure structures and demands high-resolution imaging to differen-
tiate between similar tissues [1, 17]. MRI, known for its superior tissue contrast,
requires high contrast resolution for accurate pathology identification, with tech-
niques like functional MRI (fMRI) providing essential brain activity insights. CT
imaging combines multiple X-ray views to create detailed cross-sectional images
vital for diagnosing cancers and cardiovascular conditions. Innovations such as low-
dose CT (LDCT) improve lung cancer screening by detecting early-stage diseases
with reduced radiation risks [13].

The complexity and volume of digital medical images pose significant chal-
lenges. Traditional diagnostic processes rely heavily on the expertise of radiologists
and clinicians trained to discern subtle abnormalities. Recent AI advancements aim
to address issues such as image artefacts from metal implants, which can obscure
critical details and lead to diagnostic errors. Moreover, medical image analysis
extends beyond pathology classification, including object detection and segmenta-
tion. Techniques like YOLO (You Only Look Once) and Faster R-CNN have been
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adapted to medical imaging, identifying and delineating pathological conditions
to assist radiologists in highlighting crucial areas for more accurate and efficient
diagnoses [22, 32].

Advances in image segmentation through AI, particularly with models like U-
Net, automate the division of complex images into meaningful components, which
is essential for precise diagnostics and tailored treatments. The emerging field of
medical image subtitling combines computer vision and natural language process-
ing to enhance interpretability [23]. These models typically integrate CNNs for
robust feature extraction with RNNs enhanced by attention mechanisms, produc-
ing descriptive textual summaries of medical images. This synthesis of visual and
textual analysis not only aids in clinical decision-making but also streamlines the
clinical workflow, illustrating the profound impact of AI on medical diagnostics
[30].

3 Methodology

The methodology adopted in this research is geared towards developing an effec-
tive multi-modal deep learning system, Model-80 and Model-70, which integrate
sophisticated image processing and natural language processing techniques. This
section outlines the approach taken, beginning with the architectural design of
our models, each tailored to specific training/validation split ratios to optimize
performance and robustness in medical image captioning.

3.1 Model Architecture Overview

Our models integrate image features and sequence data to produce medically per-
tinent predictions. The architecture includes:

– Encoder for Image Features: Includes an input layer for 4096-dimensional
vectors, a dropout layer to combat overfitting, and a dense layer with ReLU
activation to compress features.

– Sequence Feature Encoder: Processes data through an input layer and an
embedding layer that converts tokens into dense vectors, a dropout layer, and
a bidirectional LSTM layer to capture contextual information.

– Attention Mechanism: Employed to enhance the model’s focus by comput-
ing a context vector, averaged using GlobalAveragePooling1D.

– Decoder: Combines image and sequence features through an Add layer, fol-
lowed by dense layers with ReLU activation and dropout for normalization.
The final layer uses softmax activation for classification tasks.

– Optimization with Adam: The model employs the Adam optimizer for
effective gradient descent and optimal convergence across training epochs.

3.2 CNN Feature Extraction

The CNN architecture employs multiple convolutional layers to capture various
optical features, from low-level features like edges and textures to high-level fea-
tures such as anatomical structures and pathological patterns. Maximum pool-
ing layers reduce the spatial dimensions of these feature maps, while a dropout
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layer enhances model generalizability by randomly discarding units during train-
ing. Finally, a fully connected (dense) layer transforms the extracted features into
a fixed-size vector representation, summarizing the critical information from the
image for input into the RNN to generate captions [7, 13, 24].

3.3 RNN for Caption Generation

The RNN architecture begins with an embedding layer that converts each word in
the vocabulary into a dense vector representation, capturing the semantic meaning
necessary for coherent text generation. Bidirectional LSTM layers retain impor-
tant information across extended sequences and enhance predictive capabilities
by processing forward and backwards input sequences. An attention mechanism
allows the model to focus on relevant areas of the image during caption genera-
tion, ensuring accurate and clinically significant outputs. Additional dense layers
with ReLU activation functions introduce nonlinearity, enhancing feature repre-
sentation and capturing complex patterns within the data. The final output layer
uses a softmax activation function to predict the probability distribution over the
vocabulary for the next word in the caption sequence, guiding the selection of the
most appropriate word at each step [7, 13].

4 Implementation

This section translates the theoretical concepts outlined in the Methodology into
actionable steps, detailing the practical implementations and the evaluation strate-
gies employed. These steps ensure that each component supports the robust op-
eration of our multi-modal deep learning system, Model-80 and Model-70, and
validates the efficacy of our model in generating clinically relevant captions for
medical images. By leveraging cutting-edge computational resources and advanced
machine-learning techniques, we aim to demonstrate that our findings are theo-
retically sound, practically viable, and effective in real-world scenarios.

4.1 MediCat Dataset Overview

The dataset, sourced from the MediCat repository [26], includes 50,000 images,
specifically selected for their maximum description size of 20 words to ensure
homogeneity and the production of informative captions. Before training, images
were preprocessed to normalize and augment data, addressing variations in image
quality and format, which are common challenges in medical datasets.

4.2 Training Process

The training process is designed to optimize the model’s performance and ensure
the production of accurate and clinically relevant captions. We focus on select-
ing appropriate loss functions, optimization strategies, and regularization tech-
niques, which are crucial for handling the high variability and imbalance in medical
datasets.
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Table 1 Overview of Image Sources and Annotations in the MediCat Dataset

Description Details

Images from open access
articles

217,060 images from 131,410 open access
articles

Figure and subfigure cap-
tions annotations

7,507 annotations of captions and sub-
figures for 2,069 images

Embedded references Embedded references for around 25,000
images in the ROCO dataset

– Loss Function: Categorical cross-entropy measures the discrepancy between
predicted and actual word sequences, optimizing model predictions by mini-
mizing the negative log-likelihood of correct words [3].

– Optimization: The Adam optimizer facilitates efficient gradient descent and
faster convergence, with dynamic adjustments of the learning rate for each
parameter [12].

– Batch Size and Epochs: A batch size of 32 and 100 epochs balance compu-
tational efficiency with robust learning tailored to the complexity and size of
the medical image datasets [2].

– Learning Rate and Regularization: Adaptive learning rate and techniques
like dropout and L2 regularization are implemented to enhance model gener-
alizability and prevent overfitting [2].

4.3 Evaluation Metrics

A robust set of evaluation metrics, including accuracy, precision, recall, and F1
score, are used to assess model performance comprehensively. These metrics are
complemented by the BLEU score, which evaluates the linguistic quality of gener-
ated captions by measuring the accuracy of n-grams between the produced captions
and reference captions [1, 7].

4.4 Experimental Setup

The models are trained and evaluated in a controlled environment using powerful
GPUs, significantly reducing the computational time required for training. We use
TensorFlow for its robust neural network capabilities and flexibility. For Model-
80, the dataset is split into training (80%), validation (10%), and test (10%) sets.
In contrast, for Model-70, the dataset is divided into training (70%), validation
(15%), and test (15%) to assess the impact of different training/validation splits
on model performance. These setups ensure that each model is rigorously tested
on unseen data, providing a reliable measure of effectiveness. Systematic tuning
of hyperparameters, including learning rate, beam size, and number of layers, is
conducted using grid search and other optimization techniques to ensure the best
performance of our models under varied conditions.
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5 Experimental Evaluation

The performance of our models, Model-80 and Model-70, was rigorously evalu-
ated using a combination of traditional classification metrics and the BLEU score
to assess their natural language generation capabilities. This detailed evaluation
strategy ensures a balanced assessment of the models’ accuracy and linguistic
quality in medical image captioning within a medical context.

5.1 Model Performance Metrics

We utilized a set of metrics to evaluate different aspects of model performance,
illustrating the trade-offs between model configurations. The results, presented
in Table 2, underscore the importance of parameter tuning in achieving optimal
model performance, particularly in applications like medical image captioning,
where accuracy and reliability are crucial.

Table 2 Performance Metrics of Models with Different Parameter Sets

Model Batch Size Train/Split Set Accuracy Precision Recall F1

Model-80 64 80/20 0.4941 0.7095 0.3031 0.4244

Model-70 128 70/30 0.3936 0.6336 0.1849 0.2862

These results indicate that Model-80, with a more favourable training-to-
validation split and smaller batch size, achieves a better balance across all metrics,
particularly in precision and F1 score, compared to Model-70. This demonstrates
the challenges of model training on limited data with its lower overall performance.

5.2 BLEU Metric Evaluation

The BLEU (Bilingual Evaluation Understudy) score was employed to quantita-
tively measure the linguistic quality of text generated by our models compared to
human-crafted reference texts. This metric is particularly relevant in assessing AI
models’ natural language generation capabilities [19].

Table 3 indicates that both models perform competitively, with slight varia-
tions in BLEU-1 and BLEU-2 scores reflecting differences in lexical selection and
syntactic structuring. Model Model-70 demonstrates marginally higher scores, pos-
sibly due to a broader dataset or different parameter tuning, which might have
influenced its ability to match the reference texts closely. The robust syntactic
structuring of Model-80, despite a slightly narrower lexical diversity, is notable.

Table 3 BLEU Score Evaluation for Medical Image Captioning Models

Model BLEU-1 BLEU-2

Model-80 0.309 0.205

Model-70 0.310 0.207
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5.3 Comparative Analysis

This subsection benchmarks the performance of our models against contemporary
methodologies in medical image captioning, providing a crucial assessment of their
relative effectiveness.

Table 4 confirms that our models achieve the highest scores among the com-
pared models in both metrics, underscoring the efficacy of their architecture in
creating descriptive and clinically relevant captions. Including attention mecha-
nisms allows our models to focus on pertinent parts of images, ensuring that the
generated text accurately reflects critical aspects of the medical images.

Table 4 Comparative Analysis of Algorithms with BLEU-1 & BLEU-2 Metrics

Model Name BLEU-1 BLEU-2 Description

ImageCLEF 2017
Model [17]

0.142 0.070 Neural Captioning for the Im-
ageCLEF 2017 Medical Image
Challenges

Retinal Image Cap-
tioning [9]

0.158 0.076 Contextualized Keyword Rep-
resentations for Multi-modal
Retinal Image Captioning

Global-Local Visual
Extractor [13]

0.148 0.074 Cross Encoder-Decoder
Transformer with Global-
Local Visual Extractor for
Medical Image Captioning

Proposed Model 0.309 0.205 Hybrid CNN-RNNmodel with
integrated attention mecha-
nisms

6 Conclusions and Future Work

This research introduced an advanced approach to medical image captioning that
integrates CNNs and RNNs, enhancing the generated text’s accuracy and richness.
The deployment of Model-80 and Model-70 demonstrated that a careful balance
of training and validation and sophisticated model architecture can significantly
improve performance in medical image analysis. Our models have proven highly
effective in producing clinically relevant captions through rigorous evaluation using
traditional classification metrics and BLEU scores.

Looking forward, we aim to enrich the dataset diversity by incorporating a
more detailed range of medical images and annotations. This expansion will help
refine the models’ ability to generalize across different medical scenarios, which is
crucial for real-world applications [21]. Collaborations with medical professionals
will play a vital role in this phase, ensuring that the generated captions meet the
practical needs of clinical practice.

Additionally, exploring real-time captioning systems and adopting more ad-
vanced neural network architectures, such as Transformers, could significantly push
the boundaries of what is currently achievable in medical image analysis [11].
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