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Abstract: The rapid evolution of e-learning platforms necessitates the development of innovative methods to enhance
learner engagement. This study leverages machine learning (ML) techniques and models to predict e-learning
engagement using EEG data. Various ML models, including Logistic Regression (LR), Support Vector Ma-
chine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Networks (NNs), were
applied to a dataset comprising Electroencephalography (EEG) signals collected during e-learning sessions.
Among these models, NN demonstrated the highest Accuracy of 90%, Precision and F1-score of 88%, Recall
of 89%, and the Area Under the Curve (AUC) of 0.92 within predicting engagement levels. The results un-
derscore the potential of EEG-based analysis combined with advanced ML techniques to optimize e-learning
environments by accurately monitoring and responding to learner engagement.

1 INTRODUCTION

The advent of e-learning has significantly trans-
formed the educational landscape, offering unprece-
dented opportunities for flexible and accessible learn-
ing experiences. However, this paradigm shift has
brought about new challenges, particularly in main-
taining learner engagement. Engagement is a criti-
cal factor in educational success, influencing both the
retention of information and the overall learning ex-
perience. Traditional methods of assessing engage-
ment, such as self-reports and behavioural observa-
tions, are often subjective and prone to biases. Con-
sequently, there is a growing interest in leveraging ob-
jective physiological measures to gain deeper insights
into learner engagement (Herbig et al., 2020; Mejbri
et al., 2022).

EEG, a neuroimaging technique that records the
electrical activity of the brain, has emerged as a
promising tool in this context. EEG provides real-
time data on cognitive and emotional states by cap-
turing brainwave patterns across different frequency
bands. These patterns can be indicative of vari-
ous mental states, including attention, relaxation, and
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cognitive load, which are all relevant to engagement
in learning activities. By analyzing EEG data, re-
searchers can obtain a more accurate and dynamic un-
derstanding of how learners interact with e-learning
materials (Chrysanthakopoulou et al., 2023; Trigka
et al., 2023b).

In recent years, ML has gained significant traction
as a powerful approach for analyzing complex physi-
ological data, including EEG signals. ML algorithms
can identify patterns and correlations in large-scale
datasets, making them well-suited for predicting en-
gagement levels based on EEG recordings. With the
increasing prevalence of online education, the motiva-
tion for this research stems from the need to enhance
the effectiveness of e-learning platforms by develop-
ing methods that monitor learners’ status to ensure
that they remain engaged and motivated (Trigka et al.,
2024).

Hence, this study aims to explore the application
of various ML models to predict e-learning engage-
ment using EEG data. By doing so, it ultimately
seeks to contribute to the development of adaptive e-
learning systems that can respond to the cognitive and
emotional states of learners in real time (Trigka et al.,
2023a; Maimaiti et al., 2022). The contributions of
this article are threefold:

• Spectral features analysis is applied to reveal
potential differences between engaged and non-



engaged states. Understanding these differences
will provide insights into the neural mechanisms
underlying engagement and their connection to
lecture comprehension.

• Provides a comprehensive evaluation of ML mod-
els in predicting engagement levels from EEG
data, offering insights into the relative perfor-
mance of these models.

• Demonstrates the potential of EEG-based engage-
ment prediction to inform the design of adap-
tive e-learning systems, ultimately aiming to en-
hance personalized learning experiences and im-
prove educational outcomes

The rest of this paper is organized as follows. In
Section 2 related works for the subject under con-
sideration are noted. In particular, in Section 3 the
adopted methodology is outlined. In Section 4 the ex-
perimental results are discussed. Finally, in Section 5
the conclusions are outlined.

2 Related Works

The field of attention detection in educational settings
has seen significant advancements with the applica-
tion of EEG-based brain-computer interface (BCI)
systems (Trigka et al., 2022). Numerous studies have
explored various computational methods and classi-
fication approaches to effectively monitor and en-
hance student engagement in both traditional and on-
line learning environments.

Firstly, (Nandi et al., 2021) presents a novel ap-
proach to real-time emotion classification leveraging
EEG data streams. The proposed system called the
Real-time Emotion Classification System (RECS),
employs LR trained online with the Stochastic Gra-
dient Descent (SGD) algorithm. The research specif-
ically uses the DEAP dataset for validation, demon-
strating that RECS can classify emotional states more
effectively in real-time compared to existing offline
and online classifiers, including Hoeffding Tree (HT),
Adaptive Random Forest (ARF), and others. The sys-
tem is designed for practical applications, particularly
in e-learning environments, where real-time emo-
tional feedback can enhance learning. The authors
in (Trigka et al., 2023a) introduce an ML method-
ology that compares various classifiers trained and
tested using EEG data, specifically focusing on band
power, attention, and mediation features collected by
the MindSet device. The goal is to effectively dif-
ferentiate between ”Confused” and ”Not-Confused”
individuals. Notably, the J48 model emerged as the
most effective, achieving optimal performance with
accuracy, precision, and recall rates of 99.9%, and an

AUC of 1.
Moreover, (Al-Nafjan and Aldayel, 2022) pro-

poses a BCI system to enhance the quality of distance
education by using EEG signals to detect students’
attention during online classes. The study extracted
power spectral density (PSD) features from a public
dataset and calculated various attention indexes using
a fast Fourier transform (FFT). k-nearest neighbours
(KNN), SVM, and RF models were employed to as-
sess their performance in recognizing students’ atten-
tive states. The results showed that the RF classifier
achieved the highest accuracy of 96%, indicating its
effectiveness in distinguishing attention states in on-
line learning environments. In (Pathak and Kashyap,
2023) a novel solution that employs real-time EEG
data collected from individuals wearing EEG head-
sets during online courses is presented. This method
focuses on a deep learning convolutional neural net-
work (CNN) model, which efficiently classifies these
EEG signals with a notable accuracy rate of 70%. The
performance highlights the speed and precision of
our developed models in processing e-learning EEG
signals, offering a promising solution to current e-
learning validation challenges.

Research work (Pathak and Kashyap, 2022) intro-
duces a deep learning (DL) model designed to address
the limitations of existing machine learning models,
which rely on manual feature extraction and training
with limited data. Real-time e-learning data will be
gathered from students wearing EEG headbands dur-
ing online classes. This approach overcomes the chal-
lenges associated with traditional machine-learning
models and historical data. The proposed CNN model
will classify students into different grade levels, aid-
ing in the creation of an automated system to monitor
student learning progress and provide recommenda-
tions to enhance e-learning course materials.

Also, (Daghriri et al., 2022) presents a novel ap-
proach utilizing Probability-Based Features (PBF) de-
rived from RF and GBM models to enhance the per-
formance of ML classifiers for detecting confusion in
students during online learning sessions. The study
evaluates various classifiers, including RF, GBM, LR,
SVC, and Extra Trees Classifier (ETC), achieving
100% accuracy, precision, recall, and F1-score with
the proposed PBF approach. Additionally, the ap-
proach is validated using a separate EEG dataset,
demonstrating superior performance compared to ex-
isting methodologies. The best-performing model nu-
merically is the proposed PBF approach using RF and
GBM features, achieving consistent top scores across
all evaluation metrics.

Finally, (Aggarwal et al., 2021) evaluates learn-
ers’ attention levels in MOOC (Massive Open Online



Courses) environments and compares them with tra-
ditional classroom settings using brain signals. The
proposed approach involves capturing EEG frequency
bands from various subjects during short lectures in
both e-learning and classroom environments. An
SVM model was employed to classify students’ men-
tal states as either attentive or non-attentive.

3 Methodology
In this section, we analyze the dataset’s characteris-
tics in which our ML models were evaluated. Also,
we describe the adopted methodology, and finally, we
capture the ensemble models we experimented with,
as well as the metrics for their evaluation.

3.1 Experiment and Dataset Collection

The dataset used in this study comprises EEG record-
ings collected from participants engaged in an e-
learning activity. More specifically, eight students,
with varying levels of education (High school, Middle
school, Undergraduate) were invited to watch 11 on-
line video lectures (e.g., Quantum Physics, Statistics,
String Theory, Photosynthesis, Linear Algebra, Bi-
ology, Numbers and Operations, Computational Ge-
ometry, Mythology). During these lectures, the stu-
dent’s EEG brain waves were recorded using a multi-
channel EEG system, the Emotiv Epoc X 14-channel
headset with a sampling rate of 128/256 Hz (Dade-
bayev et al., 2022).

The dataset contains preprocessed data from the
channels AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,
FC6, F4, F8, and AF4, as shown in Figure 1. The
letters in the electrode names indicate the lobe loca-
tions: F (frontal), P (parietal), T (temporal), O (occip-
ital), and C (central). Odd numbers correspond to the
right hemisphere and even numbers to the left hemi-
sphere. Also, for each of the 14 channels, the power
spectral density (PSD) was estimated in five different
frequency bands (θ (4-8 Hz), β low (13-20 Hz), β high
(20-30 Hz) and gamma (30-45 Hz)) providing a quan-
titative measure of the brain’s electrical activity. The
target class feature captures whether a student under-
stood the lecture or not. In total, the dataset consists
of 87 features, 54370 samples in class “engaged” and
14461 samples in class “non-engaged”.

3.2 Dataset Preprocessing

Effective preprocessing of EEG data is essential for
accurate and reliable analysis. Raw EEG signals of-
ten contain noise and artifacts, such as physiological
signals, that can obscure the neural activity related to

engagement. To address this, a multi-step preprocess-
ing pipeline was implemented to clean and prepare
the data for machine learning analysis.

To extract PSD features, the Emotiv Epoc-X uses
specific digital filters that preprocess and properly
prepare the raw EEG data. Firstly, band-pass filter-
ing is applied to retain frequencies within the range
of 0.2 to 45 Hz, which are most relevant for cognitive
and emotional state analysis. This step effectively re-
moves high-frequency noise and low-frequency drifts
that are not informative for the study. Notch filter-
ing is used to remove specific frequencies, such as
power line noise at 50 Hz or 60 Hz, from the EEG
data. Also, this device includes built-in digital notch
filters at 50 Hz and 60 Hz to eliminate power line
interference, which could otherwise contaminate the
EEG signal and affect the accuracy of the PSD cal-
culation. The Sinc filter is used to smooth the signal
and remove high-frequency noise and aliasing arte-
facts. The built-in digital 5th-order Sinc filter helps
to refine the EEG data by providing a sharp cutoff for
unwanted high-frequency components, ensuring that
only the frequencies of interest are retained for PSD
analysis.

Next, artefact removal is conducted to eliminate
physiological artefacts such as eye blinks, muscle
movements, and heartbeats. Independent Component
Analysis (ICA) is employed to separate the EEG sig-
nals into independent components, allowing for the
identification and removal of components associated
with artefacts. This process helps in isolating and
preserving the true neural signals pertinent to engage-
ment.

Following artefact removal, the EEG signals are
normalized to reduce inter-subject variability. Z-score
normalization is applied to each EEG channel, trans-
forming the data to have a mean of zero and a stan-
dard deviation of one. This standardization ensures
that the features extracted from the EEG data are on
a comparable scale, facilitating better performance of
the machine learning models.

After normalization, band-pass filters are applied
to cleaned data to isolate specific frequency bands
(e.g., δ (0.2-4Hz), θ (4-8Hz), α (8-12Hz), low β (12
- 20Hz), high β (20-30 Hz), γ (30 - 45 Hz)) from
the EEG signals. These filters remove frequencies
outside the desired band, which is essential for accu-
rate PSD calculation. The PSD of different frequency
bands is computed using the FFT and/or other related
methods. These frequency bands are known to cor-
relate with various cognitive states, such as attention,
relaxation, and cognitive load, which are critical for
assessing engagement.
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Figure 1: EEG-based processing pipeline in multi-channel
Emotiv Epoc-X device.

3.3 Spectral Features Analysis

To gain a deeper understanding of the dataset, an ex-
ploratory data analysis was conducted. Figure 2 sum-
marizes, across all participants, the statistical mea-
sures of PSD, namely, mean, minimum, maximum
and standard deviation values across different fre-
quency bands per engagement class, allowing for easy
comparison. In the following, such an analysis is pre-
sented.

In the non-engaged group, the θ band exhibits
significantly higher mean (12111.71) and maximum
(17170.77) PSD values compared to the engaged
group, which has a mean of 1758.19 and a maximum
of 7214.34. This suggests that higher θ activity in
the non-engaged group may indicate increased cog-
nitive effort without effective engagement or compre-
hension. Additionally, the standard deviation in the
non-engaged group (2440.01) is higher than that in
the engaged group (1709.85), reflecting greater vari-
ability in cognitive processing.

The α band activity in the non-engaged group
shows a higher mean PSD (12022.24) and maximum
PSD (17418.27) than the engaged group, which has a
mean of 915.58 and a maximum of 1748.40. This in-
creased α activity might indicate a state of relaxation
or inattentiveness, which is counterproductive to ef-
fective learning. The variability in α band activity is
also greater in the non-engaged group, as indicated by
the standard deviation (2342.06 versus 501.08).

For the β low band, the non-engaged group dis-
plays significantly higher mean (10466.68) and max-
imum (15438.50) PSD values than the engaged group
(mean: 521.01, maximum: 924.49). This suggests

that while the non-engaged individuals might be en-
gaged in cognitive processes, these processes are not
effectively directed towards understanding the lesson.
The higher standard deviation in the non-engaged
group (2051.02 versus 241.23) indicates more un-
stable cognitive activity. In the β high band, the
non-engaged group’s mean (6925.70) and maximum
(8995.99) PSD values are markedly higher than those
of the engaged group (mean: 359.02, maximum:
657.95). This further supports the notion that the
non-engaged group is experiencing cognitive activ-
ity that is not aligned with effective learning. The
standard deviation is also higher in the non-engaged
group (1141.96 versus 152.38), reflecting less consis-
tent cognitive engagement.

Finally, γ band activity is associated with infor-
mation processing and integration. The non-engaged
group shows higher mean (4295.32) and maximum
(5796.70) PSD values compared to the engaged group
(mean: 330.62, maximum: 519.33). This suggests
that while the non-engaged individuals may be pro-
cessing information, they are not effectively inte-
grating it in a manner conducive to understanding
the lesson. The higher standard deviation in the
non-engaged group (759.34 versus 108.39) indicates
greater fluctuations in cognitive processing. Overall,
these results highlight significant differences in the
PSD values across various frequency bands between
the engaged and non-engaged groups, pointing to dif-
ferences in cognitive activity and engagement levels.

Figure 3 depicts the correlation (or linear depen-
dency) between EEG features including engagement
class (engaged, non-engaged) using a heatmap. The
heatmap visually represents the Pearson correlation
coefficients (PCCs), with colour intensity indicating
the strength of the correlation. Positive correlations
are shown in shades of red, while negative correla-
tions are in shades of blue. This visualization helps
also identify which frequency bands are most closely
associated with the engagement class.

It is observed that power-based features are highly
linear dependent but their importance in improving
the predictive performance of the ML models is low
according to the PCCs in the blue area of the heatmap.
Hence, further and extensive analysis should be con-
ducted to understand the features’ importance and ap-
ply proper feature selection techniques to indicate the
most important features that raise the model’s perfor-
mance while they reduce their complexity.

3.4 Machine Learning Models

The selection and implementation of appropriate ML
models are critical to the success of predicting e-
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Figure 2: Summary Statistics of Power Spectral Density per Frequency Band and Engagement State.

Figure 3: Correlation Between EEG Features and Engage-
ment Levels.

learning engagement using EEG data. This study
explores a range of ML models, each with distinct
strengths and capabilities, to determine the most ef-
fective approach for this task. The models evaluated
include LR, SVM, RF, GBM, and NNs. In the fol-
lowing, a detailed description of each model and the
rationale behind their selection are provided.

LR (Lu and Wang, 2024) model is based on the
logistic function (or, else, sigmoid function), which
maps any real-valued number to a value between 0
and 1. This function is particularly useful for bi-
nary classification tasks. The LR equation can be
expressed as follows: P(y = 1 | X) = σ(z) = 1

1+e−z ,
where P(y = 1 | X) is the probability that the out-
put y is 1 (engaged) given the input features X .

Also, z is defined as z = β0 + β1X1 + β2X2 + . . .+
βnXn, where σ(z) is the logistic (sigmoid) function,
(β0,β1,β2, . . . ,βn) are the coefficients of the model
and (X1,X2, . . . ,Xn) are the input features.Putting it all
together, the logistic regression model can be written
as P(y= 1 |X)= 1

1+e−(β0+β1X1+β2X2+...+βnXn) . This equa-
tion calculates the probability that the input X belongs
to class 1 “engaged”. The predicted class label can be
determined by applying a threshold (typically 0.5) to
this probability.

SVM (Pisner and Schnyer, 2020) with a Radial
Basis Function (RBF) kernel, mainly aims to find
the optimal hyperplane that separates the classes with
the maximum margin. The mathematical formula-
tion involves solving a quadratic optimization prob-
lem. The decision function for SVM is given by:
f (X) = sign(∑n

i=1 αiyiK(Xi,X)+b), where αi are the
Lagrange multipliers, yi are the class labels, K(Xi,X)
is the kernel function and b is the bias term.

Our focus here is on the RBF kernel whose func-
tion K is defined as: K(Xi,X) = exp

(
−γ∥Xi−X∥2

)
,

where γ is a parameter that determines the spread
of the kernel. Summarizing these together, the
decision function with the RBF kernel is f (X) =
sign

(
∑

n
i=1 αiyi exp

(
−γ∥Xi−X∥2

)
+b

)
.

RF (Genuer et al., 2020) is an ensemble learn-
ing method that combines multiple decision trees to
improve the robustness and generalizability of the
model. The overall prediction of the RF model is
obtained by aggregating the predictions of individual
trees, often by taking the mode (majority vote) in clas-
sification tasks. Here’s the mathematical formulation
for RFs:



1. Individual Decision Tree Prediction-Let hm(X)
be the prediction of the m-th decision tree in the
forest for input X .

2. Random Forest Prediction-The final prediction
H(X) of the Random Forest is obtained by tak-
ing the majority vote of all M trees’ predictions:
H(X) = mode{h1(X),h2(X), . . . ,hM(X)}.
GBM (Ayyadevara and Ayyadevara, 2018) is an

ensemble learning technique that builds models se-
quentially, with each new model correcting errors
made by the previous ones. The goal is to optimize
the overall prediction by minimizing the loss function.
Here’s the mathematical formulation for GBMs:

1. Model Initialization F0(X) =
argminγ ∑

n
i=1 L(yi,γ), where L is the loss

function, and yi are the actual target values.

2. Additive Model-The model is built in a stage-
wise manner. At each stage m, a new model
hm(X) is added to minimize the loss: Fm(X) =
Fm−1(X)+ηhm(X), where η is the learning rate,
and hm(X) is the new model fitted to the residuals
of the previous model.

3. Residual Calculation - For each stage
m, compute the residuals rim: rim =

− ∂L(yi,F(Xi))
∂F(Xi)

∣∣∣
F(Xi)=Fm−1(Xi)

4. Fit New Model hm(X) to the residuals: hm(X) =

argminh ∑
n
i=1 (rim−h(Xi))

2

5. Update the Model with the new fitted model:
Fm(X) = Fm−1(X)+ηhm(X).

NNs (Gurney, 2018), particularly DL models, use
multiple layers of neurons to capture intricate patterns
in data. In a feedforward neural network, the data
flows from the input layer through multiple hidden
layers to the output layer. Each neuron computes a
weighted sum of its inputs, applies an activation func-
tion, and passes the result to the next layer. The train-
ing process involves backpropagation to adjust the
weights. The mathematical formulation for a feed-
forward neural network is as follows:

1. Weighted Sum and Activation for a Single Neu-
ron-For each neuron in layer l, the output a(l)i is

computed as: z(l)i = ∑
n(l−1)

j=1 w(l)
i j a(l−1)

j +b(l)i ,a(l)i =

σ(z(l)i ), where z(l)i is the weighted sum of inputs
to the i-th neuron in layer l, w(l)

i j are the weights
from neuron j in layer l−1 to neuron i in layer l,
b(l)i is the bias term for the i-th neuron in layer l,
σ is the activation function (e.g., ReLU, sigmoid,
tanh), and a(l−1)

j is the activation of the j-th neu-
ron in the previous layer.

2. Output Layer, the process is similar: z(L)k =

∑
n(L−1)

j=1 w(L)
jk a(L−1)

j + b(L)k , ŷk = σ(z(L)k ), where L is
the final layer, and ŷk is the predicted output.

3. Loss Function L measures the difference between
the predicted outputs ŷ and the true targets y.
For example, using Mean Squared Error (MSE):
L = 1

N ∑
N
i=1(yi− ŷi)

2, where N is the number of
training examples.

4. Backpropagation: During this step, gradients of
the loss with respect to the weights and biases are
computed and used to update the parameters. For
weights w(l)

i j : w(l)
i j ← w(l)

i j −η
∂L

∂w(l)
i j

, where η is the

learning rate.

3.5 Model Training and Optimization

The evaluation of the ML models was carried out us-
ing WEKA (WEK, ), a free software suite that offers
a range of tools for data preprocessing, classification,
regression, clustering, and visualization. The experi-
ments were executed on an Apple MacBook Pro with
a 13.3” Retina Display, equipped with an M2 chip,
16GB of RAM, and a 256GB SSD. Each model was
trained on the preprocessed EEG dataset using a strat-
ified 10-fold cross-validation to ensure robust perfor-
mance evaluation. Hyperparameter tuning was per-
formed using grid search to identify the optimal pa-
rameter settings for each model as shown in Table 1.

Table 1: Optimal Hyperparameter Tuning for Machine
Learning Models

Model Hyperparameter Optimal Value
Logistic Regression Regularization (C) 1.0
SVM Kernel Type RBF

Kernel Coefficient (γ) 0.01
Regularization (C) 10

RF Number of Trees 100
Maximum Depth None (unlimited)
Minimum Samples Split 2

GBM Number of Estimators 200
Learning Rate 0.1
Maximum Depth 3

NN Number of Layers 3
Neurons per Layer [64, 128, 64]
Activation Function ReLU
Learning Rate 0.001
Batch Size 32
Epochs 150

3.6 Evaluation Metrics

To comprehensively evaluate the performance of the
ML models, several evaluation metrics were em-
ployed. These metrics provide insights into various
aspects of model performance, ensuring a robust as-
sessment of their predictive capabilities. The metrics



used in this study include Accuracy, Precision, Recall,
F1-score, and AUC (Naidu et al., 2023).

It should be noted that the ultimate value in each
metric was derived by averaging the outcomes of both
classes from all folds. The definition of these metrics
was based on the confusion matrix consisting of the
elements true-positive (Tp), true-negative (Tn), false-
positive (Fp) and false-negative (Fn). Below is a brief
description of each metric:

• Accuracy is the proportion of correctly predicted
instances out of the total instances. It is a straight-
forward metric indicating the overall correctness
of the model: Accuracy = Tp+Tn

Total Instances .
• Precision is the ratio of correctly predicted pos-

itive observations to the total predicted positives.
It reflects the accuracy of the positive predictions
made by the model: Precision = Tp

Tp+Fp .

• Recall is the ratio of correctly predicted positive
observations to all the observations in the actual
class. It measures the model’s ability to capture
all relevant instances: Recall = Tp

Tp+Fn .

• F1-score is the harmonic mean of Precision and
Recall. It provides a single metric that balances
the trade-off between Precision and Recall, espe-
cially useful when the class distribution is imbal-
anced: F1-Score = 2× Precision×Recall

Precision+Recall .
• AUC measures the ability of the model to distin-

guish between classes. It represents the degree of
separability achieved by the model. An AUC of
1 indicates a perfect model, while an AUC of 0.5
suggests no discriminative power.

These metrics provide a comprehensive view of the
model performance, enabling the identification of the
most effective model for predicting e-learning en-
gagement based on EEG data.

4 Results and Discussion

The performance of each ML model was evaluated
using several metrics: accuracy, precision, recall, F1-
score, and AUC. The results are summarized in Ta-
ble 2. The NN model outperformed all other mod-
els, achieving the highest scores across all evaluation
metrics. The GBM also showed strong performance,
indicating its effectiveness in handling complex, non-
linear relationships in the EEG data.

The NN model achieved an accuracy of 90%, a
precision of 88%, a recall of 89%, an F1-score of
88%, and an AUC of 0.92. These results demonstrate
the model’s superior ability to predict learner engage-
ment accurately. The high AUC value indicates excel-
lent discrimination between engaged and not-engaged

Table 2: Performance of Machine Learning Models

Model Accuracy Precision Recall F1-Score AUC
LR 0.78 0.75 0.76 0.75 0.8
SVM 0.82 0.80 0.81 0.80 0.84
RF 0.85 0.83 0.84 0.83 0.87
GBM 0.87 0.85 0.86 0.85 0.89
NN 0.90 0.88 0.89 0.88 0.92

states. The GBM also performed well, with an accu-
racy of 87%, a precision of 85%, a recall of 86%, an
F1-score of 85%, and an AUC of 0.89. The ensemble
nature of this model allows it to capture complex pat-
terns and interactions in the data, contributing to its
robust performance. RF, while slightly less accurate
than Gradient Boosting, still showed strong perfor-
mance with an accuracy of 85%, a precision of 83%,
a recall of 84%, an F1-score of 83%, and an AUC of
0.87. Its ability to handle high-dimensional data and
reduce overfitting by averaging multiple trees makes
it a reliable choice for EEG data analysis.

The SVM model, with an RBF kernel, achieved an
accuracy of 82%, a precision of 80%, a recall of 81%,
an F1-score of 80%, and an AUC of 0.84. Its perfor-
mance demonstrates the effectiveness of kernel meth-
ods in capturing non-linear relationships in the EEG
data. LR, despite being the simplest model, achieved
reasonable performance with an accuracy of 78%, a
precision of 75%, a recall of 76%, an F1-score of
75%, and an AUC of 0.8. This indicates that even
linear models can provide valuable insights when ap-
plied to EEG data.

The results of this study are expected to have sig-
nificant implications for the design and implementa-
tion of e-learning systems. By integrating EEG-based
engagement prediction models, e-learning platforms
can adapt in real-time to the cognitive and emotional
states of learners. This personalization can enhance
learner engagement, improve learning outcomes, and
reduce dropout rates.

5 Conclusions

This study has demonstrated the efficacy of various
ML models in predicting e-learning engagement us-
ing EEG data, with NN emerging as the most effec-
tive model. The experimental results underscored the
superiority of NN, which achieved the highest met-
rics across all evaluation parameters, an accuracy of
90%, a precision and F1-score of 88%, a recall equal
to 89% and an AUC of 0.92. These results indicate
that NNs provide a robust framework for accurately
predicting learner engagement.

The findings reveal that the most significant EEG
features contributing to engagement predictions were
the power spectral densities in the alpha and beta fre-



quency bands. These bands are well-documented in
literature for their associations with relaxation, atten-
tion, and cognitive processing, respectively. The im-
plications of this research are substantial for the de-
sign and implementation of adaptive e-learning sys-
tems. By incorporating EEG-based engagement pre-
diction models, e-learning platforms can dynamically
adapt to the cognitive and emotional states of learn-
ers, thereby enhancing engagement, improving learn-
ing outcomes, and potentially reducing dropout rates.

Future research will aim to expand the analysis to
datasets to include a broader range of physiological
signals, enhancing the robustness and generalizabil-
ity of the engagement prediction models. Addition-
ally, exploring the real-time implementation of these
models within e-learning platforms will be a crucial
step towards creating more personalized and respon-
sive learning environments.
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