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Abstract—Accurate prediction of energy usage is crucial for
optimizing resource allocation, enhancing energy efficiency, and
reducing environmental impact, pivotal for sustainable devel-
opment. This study examines electricity consumption in three
Cornell University buildings, utilizing advanced machine learning
techniques to tackle the challenges of sustainable energy man-
agement effectively. We specifically evaluated the performance of
Support Vector Machine (SVM), Random Forest, Decision Tree,
and K-Nearest Neighbors (KNN) in forecasting electricity usage.
Our findings reveal that SVM consistently outperforms the other
models across various performance metrics, including accuracy
and efficiency. These results provide vital insights into the efficacy
of these algorithms in predicting energy consumption, thereby
supporting strategic energy management decisions in educational
institutions and potentially other similar settings.

Index Terms—Electricity Consumption Forecasting, Machine
Learning Algorithms, Energy Efficiency, Sustainable Energy
Management, Predictive Analytics, Building Energy Management

I. INTRODUCTION

Energy efficiency in buildings is essential for sustainable
development, focusing on reducing energy consumption in
residential, commercial, and industrial sectors [[7]]. These mea-
sures not only help lower energy costs but also mitigate
environmental impacts by reducing greenhouse gas emissions.
Since buildings significantly contribute to global energy use
and carbon emissions, enhancing their energy efficiency is
imperative for addressing climate change and promoting eco-
nomic sustainability [44].

Accurate prediction of energy consumption remains a sig-
nificant challenge, particularly as global energy demands
continue to rise. Traditional forecasting methods often fall
short due to the complexity and variability inherent in energy
consumption patterns. This underscores the need for more
sophisticated and reliable predictive models to ensure sustain-
ability, reduce costs, and optimize resource allocation [46].

Recent advances in machine learning have proven instru-
mental in tackling these complex predictive tasks. Techniques
such as SVM, Random Forests, Decision Trees, and KNN
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have shown significant potential, thanks to their ability to
discern complex relationships within extensive datasets. These
methods are well-suited for modeling the dynamic and mul-
tifaceted nature of energy usage, particularly in environments
with fluctuating and diverse energy demands [19].

This paper explores the application of these advanced
machine learning approaches to enhance the accuracy of
energy consumption predictions in university buildings—a
setting with distinct energy usage patterns that has not been
extensively studied. By evaluating the performance of SVM,
Random Forest, Decision Tree, and KNN algorithms, our
research seeks to identify the most effective techniques for
forecasting energy usage, utilizing an inclusive dataset that
includes various factors influencing energy consumption [9],
[21].

The primary objective of this research is to refine the
precision of energy consumption forecasts, thereby aiding
more effective energy management practices. By comparing
performance metrics across different models, this study aims
to highlight the strengths and limitations of each algorithm,
offering guidance to stakeholders on selecting the most appro-
priate predictive model for their specific contexts [18], [29].

The remainder of the paper is organized as follows: Section
reviews related work, summarizing previous studies and
advancements in the application of machine learning for en-
ergy consumption forecasting. Section [III| details the machine
learning algorithms employed in this study, including SVM,
Random Forest, Decision Tree, and KNN, providing insights
into their theoretical foundations and relevance to energy
prediction. Section [[V]| describes the implementation specifics,
including data preparation, model training, and the software
and tools used. Section[V]presents the experimental evaluation,
discussing the setup, the metrics for performance evaluation,
and a detailed analysis of the results obtained from testing the
models on real-world data from Cornell University buildings.
Finally, Section concludes the paper with a summary of
findings and discusses potential avenues for future work in
enhancing predictive accuracy and applying the insights gained
to broader energy management practices.



II. RELATED WORK

Significant attention has been drawn to the prediction of
energy consumption in buildings due to its potential to enhance
energy efficiency and sustainability. Over the past decade,
various machine learning approaches have been explored to
address the complex and dynamic nature of energy consump-
tion.

Traditional statistical methods like linear regression, autore-
gressive integrated moving average (ARIMA), and support
vector regression (SVR) provided early models for understand-
ing energy usage patterns and trends. These approaches, while
straightforward and easy to implement, often struggled with
non-linear and complex data interactions inherent in energy
consumption [12], [6].

The limitations of traditional statistical models have led to
the adoption of classical machine learning techniques, such as
decision trees, random forests, and gradient boosting machines
[32]. These methods have been recognized for their ability to
model non-linear relationships and interactions among vari-
ables, enhancing prediction accuracy and generalization by
leveraging ensemble methods [17].

Recently, deep learning models have become prominent due
to their ability to process large volumes of data and model
intricate patterns. Techniques such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs),
including long short-term memory (LSTM) networks, have
been extensively used. These models are particularly adept
at capturing temporal dependencies and extracting spatial fea-
tures from complex datasets, often outperforming traditional
models [10]], [13]], [14].

Hybrid models that integrate various machine learning tech-
niques have also been developed to further enhance prediction
accuracy. These models capitalize on the strengths of both
CNNs and LSTMs to capture spatial and temporal features
effectively, showing significant improvements in performance
[41].

Ensemble methods, employing techniques such as bagging,
boosting, and stacking, have proved effective in increasing
the robustness and accuracy of predictions by combining
the outputs of multiple models. These methods have been
particularly useful in reducing prediction errors and enhancing
model reliability [27]].

Effective feature engineering and data preprocessing have
been identified as critical to the success of machine learning
models in predicting energy consumption. Techniques to ex-
tract relevant features from raw data and preprocessing steps
such as normalization and outlier detection are essential for
optimizing model performance [3l].

Comparative studies evaluating different machine learning
approaches have offered insights into the strengths and weak-
nesses of these models, guiding the selection of the most ap-
propriate techniques for specific applications [2], [28]. These
studies have typically found that deep learning models excel
at capturing complex temporal patterns, thereby generally
outperforming traditional machine learning models.

The evolution from traditional statistical methods to ad-
vanced machine learning approaches, including classical ma-
chine learning, deep learning, hybrid models, and ensemble
methods, marks significant progress in the field of energy
consumption prediction. Each approach offers unique ad-
vantages and presents certain challenges, with recent trends
favoring deep learning and hybrid models for their superior
performance. Ongoing research and development in this area
continue to drive forward the accuracy and reliability of
energy consumption predictions, supporting the broader goal
of achieving energy efficiency in buildings.

III. MACHINE LEARNING ALGORITHMS

Machine learning algorithms form the backbone of predic-
tive modeling, providing the tools necessary to extract insights
from data and make informed predictions. These algorithms
are categorized based on their learning style and the nature of
the prediction problem they are designed to solve. This section
explores several key machine learning techniques, emphasiz-
ing their theoretical foundations, practical implementations,
and specific applications in classification and regression tasks.
By understanding the mechanics of these algorithms, we can
better appreciate their strengths, limitations, and suitability for
various types of data challenges.

A. Decision Tree

Decision trees are a foundational tool in machine learning,
known for their intuitive implementation and versatility in both
classification and regression tasks. This algorithm divides a
dataset into smaller subsets while an associated decision tree is
incrementally developed. The final result is a tree with decision
nodes and leaf nodes, where each leaf node corresponds to a
decision outcome [20]], [33]].

A decision tree splits the data based on the value of an
attribute that results in the highest Information Gain (IG) or
the greatest decrease in Gini Impurity. The Information Gain
for a split is calculated using the equation:
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where D is the dataset, a is the attribute, D,, is the subset

of D for each value v of a, and Entropy(D) is a measure of
the impurity or “disorder” in D.

Decision trees are widely used due to their ability to handle
both numerical and categorical data and provide clear and
interpretable models. They have maintained their relevance in
various domains such as artificial intelligence, and their utility
is enhanced by their integration into more complex ensemble
methods like Random Forests.

B. K-Nearest Neighbors (KNN)

KNN algorithm is a popular choice for classification tasks,
utilizing local information to classify new data points based
on the majority class among the k nearest neighbors. This



approach calculates the distance between data points and
assigns classes based on proximity [43].

To address potential classification conflicts when the nearest
neighbors do not uniformly belong to the same class, weights
can be assigned to each neighbor based on their distance. This
weighting helps reduce sensitivity to the choice of k, especially
in boundary cases, and is mathematically expressed as:

1
d(x', x;)?
where w; is the weight assigned to the ith neighbor, 2’ is
the new data point, and x; is the ith nearest neighbor, with d
representing the distance between them.

The basic implementation of KNN involves choosing the
distance metric and the parameter k, with the Euclidean
distance being the most common. Selecting the appropriate
k value is crucial and often challenging, as a small k£ makes
the model sensitive to noise, while a large k& can blur class
boundaries by including points from different classes within
the neighborhood [45]].

KNN is characterized as a type of lazy learning, where com-
putation is deferred until classification is required, utilizing a
simple mechanism known as the Nearest Neighbor Rule when
k = 1. This method classifies each data point based on its
closest neighbor, highlighting the reliance on the structure and
quality of the training set [35].
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C. Random Forest

Random Forest is an ensemble learning method used for
both classification and regression tasks. It enhances decision
tree accuracy by creating a “forest” of trees and aggregating
their outputs, which significantly reduces the risk of overfit-
ting. This method utilizes bagging and feature randomness by
training multiple decision trees on random subsets of the data,
each considering a random subset of features at each decision
point [4].

In the training phase, Random Forest generates multiple
subsets of the training data, growing a decision tree for each
subset with randomized feature selection at each node. This
process is expressed mathematically as:
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where B is the number of trees, Tj(x; ©p) represents the
prediction of the b-th tree trained with a randomly selected set
of features O, and x is the input vector. For classification,
the final model output is the majority vote across all trees; for
regression, it is the average of these predictions.

Key hyperparameters include the number of trees, maximum
depth of each tree, minimum samples per split, and the number
of features considered at each split. These factors affect the
model’s performance, computational cost, and complexity. The
‘bootstrap* parameter controls whether bootstrap samples are
used for building trees, and the ‘criterion‘ defines the function
used to measure the quality of splits, impacting the trees’
structure and overall performance [235].

D. Support Vector Machine (SVM)

SVM is a robust supervised learning algorithm well-suited
for both classification and regression tasks, particularly ef-
fective in high-dimensional spaces. It is designed to find a
hyperplane that optimally separates different classes with the
maximum margin, where the margin is the distance between
the hyperplane and the nearest data points from each class,
known as support vectors [24].

SVM seeks to maximize this margin by solving a convex
optimization problem, generally tackled using quadratic pro-
gramming. The goal is to minimize ||w||, under the condition
that all data points are correctly classified, which can be
represented mathematically by:
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where w represents the normal vector to the hyperplane, b
is the bias term, and x; are the feature vectors, with y; as their
corresponding class labels.

When dealing with non-linearly separable data, SVM uti-
lizes the “’kernel trick” to transform the data into a higher-
dimensional space where it becomes linearly separable [31].
This approach allows SVM to efficiently handle complex
datasets by applying a kernel function, commonly expressed
as:

K((ﬂi,fﬂj) =TTy (5)
IV. IMPLEMENTATION

This section outlines the practical steps undertaken to im-
plement machine learning models for predicting electricity
consumption [42]. It describes the dataset used, details the pre-
processing steps, highlights the computational tools leveraged
for data processing and model implementation, and discusses
the evaluation metrics used to assess model performance.

A. Dataset

In our study, we utilized a dataset detailing electricity
consumption in Cornell University buildings [1]. The data,
available for manual download in CSV format, covers various
aggregation levels and spans from January 1, 2022, to June
10, 2024. We focused our analysis on three specific buildings:
AmericanlndianProgramHouse, AppelCommons, and Grum-
manHall. This extensive dataset facilitated a thorough analysis
pertinent to our research objectives.

B. Data Preparation and Preprocessing

Effective data preparation and preprocessing are vital to
the success of machine learning algorithms [8]. Our approach
included several key steps to enhance the dataset’s suitability
for developing regression models:

« Data Splitting: We divided the dataset into feature sets (X)
and target variables (y), essential for subsequent training
and evaluation of models.

o Imputation and Scaling: To address missing values, we
employed Simplelmputer to fill gaps using the mean of



each column, ensuring no data point was left incomplete
[[L1]. Subsequently, numerical features were standardized
using StandardScaler to equalize the scales, crucial for
algorithms like SVR and KNN.
« Categorical Encoding: We converted categorical data into
a machine-readable format using one-hot encoding, al-
lowing models to efficiently process and learn from these
data points.
o Data Transformation: Utilizing a ColumnTransformer, we
merged processed numerical and categorical features into
a unified dataset ready for machine learning applications.
The dataset was then split into training (80%) and testing
(20%) sets, ensuring models are trained on a substantial por-
tion of the data and validated against unseen data to evaluate
their generalization capabilities.

C. Technology Stack

Our implementation leveraged Apache Spark, a robust open-
source distributed processing system known for its high-speed
performance and versatility in handling large datasets. Spark’s
in-memory computation capabilities significantly enhance the
efficiency of data processing tasks essential for this study. It
supports a range of data science tasks, including batch process-
ing, stream analysis, machine learning, and graph databases,
making it ideal for processing and analyzing the large-scale
data involved in our study [22], [30], [38]], [39].

D. Evaluation Metrics

To assess the effectiveness and accuracy of our models,
we utilized a comprehensive suite of evaluation metrics [16],
[26], chosen for their relevance to the specifics of electricity
consumption forecasting:

o Regression Metrics: Include Mean Absolute Error
(MAE), Mean Squared Error (MSE), and R2 Score.
These metrics are critical for evaluating the accuracy and
predictive power of our models, ensuring that predictions
are both precise and consistent with real-world data [34].

o Classification Metrics: Metrics such as Precision, Re-
call, and Fl-score assess the model’s ability to classify
peak consumption periods correctly, crucial for effective
energy management [S], [23], [40].

1) Mean Absolute Error (MAE):
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2) Mean Squared Error (MSE):
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3) Root Mean Squared Error (RMSE):
RMSE = VMSE
4) Mean Absolute Percentage Error (MAPE):
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5) R2 Score (Coefficient of Determination):
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This structured approach ensures a robust assessment of
the models’ performance, highlighting strengths and areas for
improvement. This information is critical for refining models
and selecting the best approach for deployment in real-world
scenarios.

R?=1-

V. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of four
machine learning algorithms: Decision Tree, KNN, Random
Forest, and SVM. The performance of these algorithms was
assessed using a dataset on electricity consumption from three
buildings at Cornell University, with each building analyzed
separately to determine the most effective algorithm for pre-
dicting energy usage.

A. AmericanlndianProgramHouse

The performance of the machine learning algorithms on the
AmericanIndianProgramHouse building dataset is summarized
in Table [l where several key metrics are used to evaluate the
accuracy and efficiency of each model.

TABLE I
PERFORMANCE METRICS FOR THE AMERICANINDIANPROGRAMHOUSE
BUILDING
Algorithm MSE | RMSE | MAE | MAPE R2
Decision Tree 29.92 24.49 19.84 | 20.52% | -0.38
KNN 27.38 22.37 17.93 1897% | -0.15
Random Forest | 24.38 21.27 17.10 18.40% | -0.04
SVM 18.45 20.94 16.90 18.30% | -0.01

The SVM algorithm demonstrates the best performance
with the lowest MSE, RMSE, and MAE values, indicating
higher prediction accuracy and fewer errors compared to
other algorithms. It also has the lowest MAPE at 18.30%,
reflecting relatively low percentage errors. Its R? value of -
0.01, although negative, is closest to zero among the models,
suggesting it better aligns with the actual data compared to
other algorithms. In contrast, the Random Forest algorithm
shows slightly higher error metrics, and the Decision Tree
algorithm performs the worst, with the highest values across
all metrics and a significantly negative R? value of -0.38,
indicating a poor fit. The KNN algorithm, while better than
the Decision Tree, still lags behind SVM and Random Forest,
with intermediate values for all metrics.

Figure [T| shows the predicted versus actual energy consump-
tion values, providing a visual representation of how each
algorithm captures the variance in the data.

The visual comparison highlights the SVM’s superior ability
to track the actual consumption pattern more closely than the
other models. The plots reveal that while Random Forest and
KNN also follow the general trend, they exhibit more variance
from the actual values. The Decision Tree model shows the
most deviation, underscoring its poor performance as indicated
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Fig. 1. Comparative Performance of ML Algorithms for the AmericanIndianProgramHouse Building

by the quantitative metrics. The visual analysis corroborates
the numerical findings, underscoring SVM’s effectiveness in
this application.

Overall, the detailed metrics and visual comparisons across
the algorithms underscore SVM'’s superiority in predicting
energy consumption accurately for the AmericanlndianPro-
gramHouse, making it the most reliable model among those
tested.

B. AppelCommons

The performance of various machine learning algorithms on
the AppelCommons building electrical consumption dataset is
detailed in Table[Tl] This table evaluates each algorithm across
several metrics to assess their predictive accuracy and model
fit.

TABLE II
PERFORMANCE METRICS FOR THE APPELCOMMONS BUILDING
Algorithm MSE | RMSE | MAE | MAPE R?
Decision Tree 99.92 24.49 19.84 | 20.52% | -0.38
KNN 75.38 22.37 17.93 | 18.97% | -0.15
Random Forest | 52.38 21.27 17.10 | 18.40% | -0.04
SVM 38.45 20.94 16.90 | 18.30% | -0.01

The SVM shows superior performance across most metrics,
including the lowest MSE and RMSE, suggesting it has the
smallest deviation from the actual values. It also achieves
the lowest MAE and MAPE, indicating its predictions are
the most precise and closest to actual data points. Despite
its effectiveness in minimizing prediction errors, the slightly
negative R? value suggests a limitation in its ability to fully
capture the variance in the dataset.

In contrast, the Random Forest algorithm, while slightly
outperforming SVM in terms of the R? value, shows higher
values in MSE, RMSE, MAE, and MAPE, indicating less
accuracy in predictions. The Decision Tree algorithm exhibits
the highest error metrics, indicating significant deviations from
actual values and the poorest model fit, as evidenced by the
most negative R? value. The KNN algorithm, performing
better than the Decision Tree but not as well as SVM or
Random Forest, reflects moderate prediction accuracy and a
moderate ability to capture data variance.

Figure [2] illustrates the predicted versus actual energy
consumption values for each algorithm, providing a visual
representation of each model’s effectiveness.

The visual analysis aligns with the quantitative findings,
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Fig. 2. Comparative Performance of ML Algorithms for the AppelCommons Building

with SVM displaying the closest alignment to actual energy
usage patterns. This graphical comparison underscores SVM’s
precision and highlights areas where other models may require
further tuning or parameter adjustment to improve their pre-
dictive performance.

Overall, the detailed examination of both the numeric and
visual data corroborates the superior performance of SVM in
the context of the AppelCommons building dataset. It suggests
that while SVM may have slight limitations in capturing total
variance as indicated by the negative R? value, it still con-
sistently provides the most accurate and reliable predictions
among the models tested.

C. GrummanHall

The performance metrics for various machine learning algo-
rithms applied to the GrummanHall building’s electrical con-
sumption dataset are summarized in Table These metrics
are instrumental in evaluating the predictive accuracy and the
ability of each model to capture data variance.

Among the evaluated algorithms, the SVM consistently
achieves the best performance across all metrics: it registers
the lowest MSE and RMSE, which highlights its precision in
predicting energy consumption with minimal deviation from

TABLE III
PERFORMANCE METRICS FOR THE GRUMMANHALL BUILDING
Algorithm MSE | RMSE | MAE | MAPE RZ
Decision Tree 69.77 25.29 20.44 | 23.62% | -0.73
KNN 55.19 22.70 18.11 | 21.25% | -0.39
Random Forest | 47.62 20.68 16.17 19.24% | -0.16
SVM 39.87 19.75 15.51 18.41% | -0.05

actual values. SVM also reports the lowest MAE and MAPE,
underscoring its accuracy in terms of both absolute and relative
measures. However, its R? value, while the highest among the
models, is still slightly negative at -0.05, indicating a limitation
in its ability to explain the variance in the dataset fully.

In contrast, Random Forest and KNN exhibit higher er-
ror metrics across the board and more negative R? values,
reflecting their poorer fit in modeling the building’s energy
consumption. Notably, the Decision Tree algorithm performs
the least effectively, with the highest MSE, RMSE, MAE, and
MAPE, alongside a significantly negative R? value of -0.73,
indicating substantial discrepancies between the predicted and
actual values.

The accompanying figure [3] visually underscores these find-



ings, with SVM’s plots closely mirroring the actual consump-
tion patterns, indicating higher model accuracy and efficiency.
In contrast, the plots for Decision Tree, Random Forest, and
KNN show greater disparities from the actual data, particularly
evident in the Decision Tree’s plot, which exhibits the most
pronounced deviations.

This analysis confirms that SVM not only provides the most
accurate predictions for the GrummanHall building dataset but
also highlights areas for potential improvement in the other
models, especially in enhancing their capabilities to capture
and explain the data’s variability.

VI. CONCLUSIONS AND FUTURE WORK

This research investigated the application of advanced ma-
chine learning techniques to accurately predict energy con-
sumption in buildings, focusing specifically on evaluating
the performance of four algorithms: SVM, Random Forest,
Decision Tree, and KNN. The aim was to identify which
algorithm most effectively forecasts energy usage within these
settings.

Our analysis demonstrated that the SVM algorithm out-
performed Random Forest, Decision Tree, and KNN across
multiple performance metrics, including MSE, RMSE, MAE,
and MAPE. Despite its slightly negative R? value, indicating
some limitations in explaining the full variance in the data,
SVM’s superior performance suggests it is highly effective
for predictive tasks in energy consumption.

The findings have profound implications for energy man-
agement in buildings, where accurate forecasting is crucial for
optimizing resource allocation, improving energy efficiency,
and reducing operational costs. The application of SVM and
similar advanced machine learning models can significantly
enhance decision-making processes, allowing for more precise
and efficient management strategies [37].

Looking ahead, future research should focus on several
areas to enhance the predictive accuracy and applicability
of these models. Refining the SVM algorithm to address its
limitations in variance explanation could yield even more
robust predictions. Exploring ensemble methods that combine
the strengths of various machine learning approaches might
also improve overall prediction accuracy [15]. Additionally,
incorporating external influences such as seasonal changes,
user behavior, and building-specific characteristics could fur-
ther tailor the predictive models to real-world complexities
[36].

Moreover, expanding this research to incorporate real-time
data processing and forecasting could revolutionize how en-
ergy management systems operate, making them more adap-
tive to immediate consumption patterns and fluctuations.

In conclusion, this study underscores the potential of using
advanced machine learning techniques like SVM for effective
energy consumption forecasting in buildings. It highlights the
critical role of accurate predictive modeling in enhancing en-
ergy management practices and paves the way for integrating
more sophisticated analytical tools into building management
systems.
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