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Abstract. Process mining constitutes an integral part of enterprise
infrastructure as its adaptability and evolution potential enhance the
digital awareness of stakeholders. In the context of Industry 4.0 a main-
stay of process mining is the integrity verification of process graphs. Since
manufacturing typically consists of numerous operations, it follows that
process mining techniques, including link prediction, must possess learn-
ing capabilities powerful enough to accurately evaluate the deviation
degree from the respective template using a wide array of structural and
functional attributes, including semantics in the form of labels denot-
ing operations such as data request or human operator notification. In
turn, this relies heavily on discerning higher order patterns because of
the distributed nature of industrial processes. Graph neural networks
(GNNs) are ideally suited for performing link prediction since they offer
scalability, versatility, and geometric intuition. Two attribute sets were
tested, one containing only structural patterns and one combining them
with functional ones. Results with synthetic benchmark process graphs
of varying complexity show that GNNs exploit the extra functional infor-
mation in the form of labels to recover missing edges, themselves part of
the graph structure, even when the functional attributes are noisy.

Keywords: Graph neural networks · Link prediction · Industry 4.0 ·
Geometric analytics · Process graphs · Higher order patterns · PyTorch

1 Introduction

The current theory and practice of Industry 4.0 relies heavily on process mining
for production quality, manufacturing progress, and smooth supply chain and
logistics flow under a number of possibly conflicting up to a degree constraints.
Industry 4.0 is a major turning point since historically production technology
was limited to its manufacturing core, whereas tasks such as quality assurance,
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job flow monitoring, and procedure compliance were the exclusive domain of
human professionals. However, the ongoing digital transformation of enterprise
environments in conjunction with the recent advent of data driven methodologies
require a higher degree of digital awareness, both from humans and machines.
One major aspect of the latter is the considerable complexity frequently arising
in human-to-machine and machine-to-machine interaction.

Table 1. Notation synopsis.

Symbol Meaning First in
�
= Equality by definition Eq. (1)
τ (·, ·) Tanimoto set similarity coefficient Eq. (5)
ν (·, ·) Asymmetric Tversky set similarity index Eq. (15)
S1 \ S2 Asymmetric set difference Eq. (15)
{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (2)
(t1, . . . , tn) Tuple with elements t1, . . . , tn Eq. (1)
|S| Set or tuple cardinality functional Eq. (2)
u ∼ v Vertex v is adjacent to u Eq. (9)

In this context and given that process design flaws or execution errors not
discovered and promptly corrected may well result in severe production degrada-
tion, machine learning (ML) strategies should be employed in order to perform
graph integrity operations such as link prediction. This is especially critical with
the increased requirements for system interoperability in general and the exces-
sive complexity of process graph mining systems in particular. The major driving
forces behind the latter are on one hand the plethora of data facilitating the dis-
covery of latent links each complete with its own semantics and parameters [27],
often in the form of labels, including system logs of heterogeneous formats across
platforms, checkpoints, minor low level artificial intelligence (AI) decisions, data
exchange requests, special flags or triggers, notification to human operators,
local branch conditions, and subprocess spawn or termination, and on the other
hand unforeseen conditions [1] such as driver misconfigurations, control software
exceptions, power outages, random equipment failures, and spurious activations.

In such dynamic enterprise environments it makes perfect sense to utilize ML
techniques which not only understand, so to speak, their complexity, but they
also natively handle the distributed and higher order nature of process graphs.
The latter implies that there should be a fine balance between computational
cost and the information harnessed from the neighborhood of each vertex in the
form of ground truth attribute vectors. Graph neural networks (GNNs) with
attention mechanisms are tailored for tasks such as node classification and link
prediction, while offering scalability and exploiting hardware parallelism.
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The primary research objective of this conference paper is the development
of a GNN implemented in PyTorch1 for link prediction in synthetic Industry 4.0
benchmark process graphs with properties determined by the relevant scientific
blibliography [20] [25]. The GNN is trained with either only structural attributes
or in conjunction with functional ones [12]. Moreover, the effect of noisy func-
tional attributes to link prediction is examined. The principal motivation, which
also differentiates this work from many previous approaches, is to determine
whether the addition of functional information results in improved recovery of
purely structural attributes. The main underlying assumption is that, whereas
edges may be removed from the template graphs, which express the ground truth,
to simulate real process graphs, no edges can be added. Thus, the error is always
one sided. This is not trivial as the lack of edges in a template process graph may
well reflect physical or manufacturing constraints. The proposed methodology is
versatile enough to be applied to any labeled graph from other domains.

The remaining of this work is structured as follows. In Sect. 2 the recent scien-
tific literature about process mining and GNNs is briefly reviewed. The proposed
methodology is presented in Sect. 3, while in Sect. 4 are given the results and the
intuition behind them. Future research directions are explored in Sect. 5. Each
technical acronym is explained the first time is encountered in text. The terms
attribute and feature are used interchangeably. In function definitions parame-
ters are placed inside parenthesis after formal arguments following a semicolon.
Finally, in Table 1 the notation is explained.

2 Previous Work

Industry 4.0 is a milestone in manufacturing [6] as it aims to the full digitiza-
tion of industrial production [20] through a wide array of sensors installed in
machinery and in wearable electronics for human operators as well as through
the delegation of minor, mundane, or dangerous tasks to AI [1]. Cyber-physical
systems are critical for Industry 4.0 environments [18] with major aspects the-
oreof being operational efficiency [29], interoperability over a broad spectrum
of operational requirements [25], and device technologies [4]. Industry 4.0 can
benefit from circular economy [22] and reinforce industrial sustainability [19].

In process mining automatically generated process logs are mined for patterns
[26], latent dependencies [27], and persistent anomalies [20]. The IEEE extensive
event stream (XES) or IEEE standard 1849–2016 is a log file format designed
for the explicit purpose of process mining [1] currently supported in a wide array
of commercial software [17]. Algorithms for process pattern discovery include A
and A+ [7] [14]. Research topics include dealing with malformed or otherwise
imperfect process logs [23], extracting abstract events with unsupervised learning
[24], optimizing software engineering [15], context-aware process mining with
advanced graph mining [3], and the connection between process mining and
sequence complexity [2]. Process mining relies on graph operations such as graph
approximation [11] and heuristic community discovery [13].
1 https://pytorch.org.

https://pytorch.org
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GNNs are widely employed among others in recommender systems [16], graph
clustering [21], combinatorial optimization [5], and social network analysis [10].
Other neural network architectures include self organizing maps (SOMs) [8],
probabilistc convolutional networks [28], and tensor stack networks (TSNs) [9].

3 Proposed Attributes

This section describes how the two attribute sets for the ground truth vector in
each vertex are generated, shown in Table 2 along with the equation where each
functional feature is defined in. Please note that the structural attributes are
taken from the graph mining literature. Process graphs are distributed represen-
tations of higher order phenomena with vertices and edges storing values, indi-
cating process results, conditional dependencies, and input determining subse-
quent manufacturing actions. Moreover, edge labels denoting states, conditions,
or flags lead to complex global interaction patterns stemming from simpler local
ones. In fact, each distinct vertex pair can be connected with multiple edges as
long as their labels are distinct as shown in Fig. 1. Therefore, any extension of
Metcalfe’s law to the class of multilayer process graphs, whose formal definition
is given in Definition 1, should take into account the above factors.

Definition 1 (Multilayer process graph). A multilayer graph Q modelling
an industrial process is formally defined as the ordered quadruple of equation (1):

Q
�= (V,E,Σ, h) (1)

– The vertex set V contains states such as the beginning or the end of a sub-
process or important intermediate operations.

– The directed edge set E contains the dependencies or the connections between
either process states or subprocesses.

– The label set Σ consists of each possible label. The latter depend heavily on
the semantics of the underlying business process.

– The functional h : E → 2Σ \ ∅ maps an edge to a not necessarily unique label
subset as shown in equation (2).

In these graphs a layer is formed by the edges of a single label and their
endpoints with the total activity depending on a number of interacting factors.
The first is the activity in each separate layer. Thus, the denser a layer is, the
higher its activity. The second is the activity across layers occurring at the
vertices connecting different layers. Therefore, the more vertices two layers are
connected with, the higher their interaction is. The final factor is the labels in
each edge with higher edge variability resulting in higher activity on the process
graph.

In an Industry 4.0 setting the transition from one process step to the next one
requires various elements, each represented with a single labeled edge resulting
in vertex pairs connected with multiple edges. Instead of examining each such
edge separately, they are collected in a single edge with a label set L as explained
in definition 2. This lays the groundwork for higher order functional features.
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Table 2. Ground truth attributes.

Structural attributes Functional attributes Definition

Inbound degree Label variability of inbound edges Eq. (3)

Outbound degree Label variability of outbound edges Eq. (3)

Input or output vertex? Vertex fan out Eq. (4)

Number of triangles Similarity of directed labeled triangles Eq. (5)

Clustering coefficient Similarity of undirected labeled triangles Eq. (5)

Number of squares Similarity of directed labeled squares Eq. (5)

Number of squares Similarity of undirected labeled squares Eq. (5)

Adamic-Adar score Labeled Adamic-Adar score Eq. (9)

Resource allocation Labeled reource allocation Eq. (10)

Shortest paths through the vertex Label variability of paths through the vertex Eq. (13)

L = {l1, ..., lc}

lc

l1

Fig. 1. Edge sets.

Definition 2 (Process graph edge). For a given vertex pair connected by c
edges with distinct labels let L be the set consisting of these edges as shown in
(2). These individual edges can be replaced by a single edge with L as its property.

L
�= {l1, . . . , lc} ∈ 2Σ \ ∅, c

�= |L| (2)

At this point it should be highlighted that throughout this work a template
graph is the blueprint graph or the ground truth, which is considered to be
flawless, and a real or actual process graph is the graph derived by removing
edges from the template graph in order to simulate errors during manufacturing.
Each attribute has been normalized in order to keep them at the same scale.

Based on definition 2 a number of features can be derived for each label set.
The first is the inbound variability βin(v) of a vertex v which is defined as the
cardinality of the inbound label set as shown in (3). The outbound variability
βout(v) is similarly defined. Intuitively the two variability flavors correspond to
the number of conditions attached to a vertex like reading sensor input, sending
or waiting for a control signal, notifying a human operator, moving an item
across the plant floor, or running a full cycle of diagnostics.

βin(v)
�=

1
maxs∈Q [βin(s)]

|Lin| and βout(v)
�=

1
maxs∈Q [βout(s)]

|Lout| (3)

Along a similar line of reasoning the fan-out γ(v) shown in equation (4)
can be also defined on the grounds that it is a nonlinear transformation of the
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features of (3) expressing how the graph branches at v. This is not trivial to
be computed by the GNN of Sect. 3 in contrast to, for instance, the sum of or
the difference between these attributes. This attribute is zero only for input or
output vertices.

γ(v) �=

⎧
⎨

⎩

1
maxs∈Q [γ(s)]

βout(v)
βin(v)

, βin(v) �= 0

0, otherwise
(4)

Triangles, namely closed paths of length three, play a significant role in both
the overall connectivity and the small world phenomenon in power law graphs.
When label sets are available, then there is a plethora of ways to measure labeled
triangle similarity. The one shown in (5) relies on the Tanimoto set similarity
coefficient of (6) for the label sets Lu, Lv, and Ls of the vertices u, v, and s. Since
its algebraic expression ignores edge direction, it can be applied to both directed
and undirected triangles. Formula (5) can be naturally extended to squares with
a similar rationale. Moreover, the harmonic mean H (·) is insensitive to outliers,
in contrast to the arithmetic mean, or to values close to zero, unlike the geometric
mean. Therefore, it has better numerical and algorithmic properties compared
to the other two Pythagorean means. Its numerical stability can be explained
by (7) and (8). Additionally, its intuitive interpretation as work rate or velocity
can be used to assess trajectories in feature spaces across domains like physics
and computer science, paving thus the way for geometric analytics.

δ(v) �=
1

maxu′∈Q [δ(u′)]
3

1
τ (Lu, Lv)

+
1

τ (Lv, Ls)
+

1
τ (Ls, Lu)

(5)

The Tanimoto set similarity coefficient of (6) relies on rudimentary set oper-
ations and it is a metric of the size of the overlap of two sets. The right hand
size can be derived by the left hand one through Venn diagrams and it is com-
putationally more efficient, especially if set cardinality estimators are used.

τ (S, S′) �=
|S ∩ S′|
|S ∪ S′| =

|S ∩ S′|
|S| + |S′| − |S ∩ S′| (6)

The partial derivative of the harmonic mean with respect to xk of the argu-
ment vector is computed as in (7) using the rule of inverse function derivative.
Therein it can be seen that this derivative is roughly proportional to the square
of the harmonic mean value at this point. Given that in the attributes of Table 2
lie between zero and one, it follows that the partial derivative remains bounded.

∂H (x)
∂xk

=
∂

∂xk

⎡

⎢
⎣

n
∑n

k=1

1
xk

⎤

⎥
⎦ = −n

∂

∂xk

⎡

⎢
⎣

1
∑n

k=1

1
xk

⎤

⎥
⎦

(
∑n

k=1

1
xk

)2 =
xk

n
H (x)2 (7)
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The harmonic mean gradient vector with respect to the input vector is given
by (8). Again, given that the actucal harmonic mean value lies between zero and
one, it follows that the gradient vector norm not only is easy to compute based
on known quantities but it also remains bounded in the region of interest.

‖∇xH (x)‖2 =
H (x)2

n

∥
∥
∥
∥
∥
∥
∥

[
x1 . . . xn

]T

︸ ︷︷ ︸
x

∥
∥
∥
∥
∥
∥
∥
2

=
H (x)2

n
‖x‖2 (8)

The labeled Adamic-Adar score shown in (9) is a variant of the Adamic-Adar
score, which in turn is roughly based on information theory as it indicates the
amount of information between a vertex v and its neighobrs and it is extensively
employed in link prediction settings. The variant proposed here is a metric of
the label variability between a given vertex v and every adjacent vertex u.

ζ(v) �=
1

maxs∈Q [ζ(s)]

∑

u∼v

1
ln |Lu| (9)

The labeled resource allocation of (10) has a similar formula with (9) but it
comes from a different reasoning, namely the expansion potential of the graph
segment formed by v and its neighborhood. This can be adapted to evaluate this
potential in terms of the local information content existing around v.

η(v) �=
1

maxs∈Q [η(s)]

∑

u∼v

1
|Lu| (10)

Another graph feature which has a geometric aspect is the label variability
across a given path π of length p coming through vertex s which also expresses
topological proximity. Specifically, the overall path similarity is the harmonic
mean of the similarities of the individual edges comprising π as shown in (11).

ξ(π; s) �=
p

∑
u∼v

1
τ (Lu, Lv)

, π = {(u, v)}, s ∈ π (11)

Under mild conditions ξ(π) can be approximated by (12). The correction
factor c0 and integral bounds τ1 and τ2 measure the approximation error. It
should be noted that the following conditions should hold: The path length p
should be sufficiently large and there is sufficiently high variability in the values
of label set similarity. The latter can be assessed by set cardinality estimators.

ξ(π) ≈ p

(∫ τ2

τ1

dτ

τ

)−1

= p

(

ln
τ2
τ1

+ c0

)−1

(12)

The final feature is the arithmetic mean of the similarities as determined
by (11) of the shortest paths coming through vertex v. This evaluates the role
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v plays in the overall structural coherence of the graph Q, in contrast to the
preceding attributes which measure contributions to local structural coherence.

σ(v) �=
1

maxs∈Q [σ(s)]
1

|{π}|
∑

π

ξ(π; v) (13)

It should be noted that (13) was derived by analogy with the Newman-Girvan
vertex centrality metric. Intuitively, it is maximized for articulations or when the
graph has a tree-like structure and minimized for peripheral vertices. Since the
harmonic mean of (11) has already smoothed out outliers in the various shortest
paths through v, the simpler arithmetic mean is used in (13).

4 Results

4.1 Data Synopsis

Table 3 contains the summaries of the benchmark graphs, each a Kronecker syn-
thetic graph, taken from [12]. In order to generate the simulated process graphs,
edges were removed at random from the template graph until the average SNR
of (16) is met. For each benchmark and for each SNR np noisy graph instances
were created by removing a percentage of edges mp and their labels, where np

and mp are shown in Table 4 along with other parameters.

Table 3. Dataset synopsis.

Property Set 1 Set 2 Set 3 Set 4 Property Set 1 Set 2 Set 3 Set 4

Generator vertices 5 5 7 7 Diameter 11 13 15 17

Generator edges 7 8 13 17 80% diameter 7 9 11 12

Label set size 16 32 48 64 90% diameter 8 11 13 15

Number of triangles 625 3125 7617 21881 Labels per edge 6.53 11.67 28.44 32.33

Number of squares 422 1932 5894 18432 Label variance 4.19 8.32 14.86 16.22

From Table 3 it follows that the four benchmark graphs have an increasing
level of structural and functional complexity. In particular, set 1 has few patterns
and a small label set. Also there is a low number or triangles and a short diam-
eter, indicating a very local information flow. Set 2 has a moderate number of
patterns and label set size. Also it has a short diameter and an average number
of triangles, meaning that there is some structural resiliency. Set 3 has a high
number of patterns but a moderate label set size. Also it has a longer diameter
and a high number of triangles. Therefore, it is more complex than the preceding
benchmark graphs but it contains more attributes to be exploited. Finally, set 4
has a high number of triangles and a large label set size.
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Table 4. Experiment setup.

Parameter Value Parameter Value Parameter Value

np 100.000 Tversky index 0.95, 0.9, 0.85 Learning rate cosine

mp 0.05, 0.1, 0.15 Discrete SNR 2.9444, 2.1972, 1.7346 Epochs ep 50

The GNN was implemented in PyTorch using the geometry library, which is
a very popular tool for this ML task. Additionally, the PyTorch implementation
of GNNs supports sparse attribute vectors, further reducing computational cost.
The training takes place over ep epochs using the cosine learning rate. The decay
rate of the latter adapts to the number of iterations in the training process.
Specifically, during the early iterations the cosine rate is close to one and then
decays with a quadratic rate. This is due to the Taylor expansion shown in (14).

cosϑ =
+∞∑

k=0

(−1)k
ϑ2k

2k
≈ 1 − ϑ2

2
(14)

In order to create to evaluate the effect noisy functional attributes have
on link prediction, the distortion degree of the functional features should be
evaluated. This can be done through the asymmetric Tversky index of (15). The
parameters α0 and α1 determine different penalties for the different sets in the
denominator. Here α0 is three times as high as α1 as missing labels are more
important.

ν (T, V ;α0, α1)
�=

|T ∩ V |
|T ∩ V | + α0|T \ V | + α1|V \ T | , α0 + α1 = 1 (15)

The above evaluates the divergence between sets T and V where the former
is a template and the latter a variance thereof. Thus, these two sets are not inter-
changeable as is the case of many major set similarity metrics. The cardinality
of large datasets can be estimated with suitable techniques. The following hold:

– When T and V coincide, their intersection equals their cardinality and both
set differences are empty. Thus, the nominator equals the denominator.

– Similarly, when T and V are disjoint, then the nominator is zero. Simultane-
ously, at least one of the two set difference terms is non-zero.

– For intermediate cases at the denominator the intersection and at least one
of the two set difference terms is non-empty and so is the nominator.

With 15 the discrete signal-to-noise ratio (SNR) can be defined as in 16. This
definition is different from other settings, for instance in digital telecommuni-
cations where the nature of noise is continuous and it is attributed to factors
including electron mobility from multiple sources of equal power. In this context
noise comes from label omission such as malformed or partially overwritten logs.

SNR �= ln
(

ν

1 − ν

)

⇔ ν =
1

1 + exp (−SNR)
, 0 < ν < 1 (16)
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The logarithm in (16) is inspired by the logit function. Also ν is the average
SNR taken over all edges of the noiseless and the noisy process graphs. Moreover,
the logarithm tends to be easy to be approximated by a piecewise constant func-
tion. One way to see this is to consider the average tangent λ in non-overlapping
exponential intervals as shown in (17). Note that (16) is an independent noise
power assessment metric not used in the GNN training or in its evaluation.

λ
�=

∣
∣
∣
∣
log2 2κ+1 − log2 2κ

2κ+1 − 2κ

∣
∣
∣
∣ = 2−κ (17)

The computation of SNR is genrally numerically stable. However, the closer
SNR gets to zero or one, the harder becomes to compute its actual value since
the derivative approaches infinity with a quadratic rate as shown in (18):

∣
∣
∣
∣
dSNR

dν

∣
∣
∣
∣ =

∣
∣
∣
∣

d

dν

[

ln
(

ν

1 − ν

)]∣
∣
∣
∣ =

∣
∣
∣
∣

1
ν(1 − ν)

∣
∣
∣
∣ =

1
ν(1 − ν)

(18)

Table 5. GNN accuracy for both attribute sets.

SNR noiseless noiseless 2.9444 2.9444 2.1972 2.1972 1.7346 1.7346

graph mp S S+F S S+F S S+F S S+F

set1 0.05 0.9417 0.9483 0.9131 0.9205 0.8715 0.8804 0.8551 0.8633

0.10 0.9124 0.9284 0.8986 0.9154 0.8631 0.8731 0.8433 0.8591

0.15 0.8991 0.9108 0.8731 0.8926 0.8554 0.8592 0.8301 0.8441

set2 0.05 0.9433 0.9522 0.9164 0.9199 0.8831 0.8984 0.8589 0.8713

0.10 0.9401 0.9467 0.8941 0.9036 0.8701 0.8792 0.8389 0.8544

0.15 0.9208 0.9312 0.8817 0.8970 0.8665 0.8712 0.8345 0.6465

set3 0.05 0.9302 0.9554 0.9217 0.9344 0.8851 0.9024 0.8642 0.8693

0.10 0.9286 0.9324 0.9055 0.9186 0.8711 0.8902 0.8559 0.8631

0.15 0.9143 0.9224 0.8976 0.9067 0.8631 0.8793 0.8411 0.8493

set4 0.05 0.9590 0.9618 0.9319 0.9335 0.8991 0.9017 0.8723 0.8887

0.10 0.9510 0.9543 0.9158 0.9199 0.8718 0.8841 0.8645 0.8742

0.15 0.9467 0.9521 0.9044 0.9154 0.8604 0.8734 0.8567 0.8591

In Table 5 the accuracy of the GNN for the structural (S) and the structural
and functional (S+F) feature vectors is shown for each synthetic benchmark
graph for each value of mp and discrete SNR. The maximum of each column is
marked with boldface for easier comparison. Also in Fig. 2 the accuracy for the
first and fourth benchmarks are shown for the lowest mp value.

From the above results certain conclusions can be drawn. First and fore-
most, the introduction of functionality always outperforms the purely structural
attributes in terms of accuracy. This can be attributed to the fact that func-
tionality follows structure as labels belong to labels. Moreover, the increasing
complexity does not necessarily lead to significant accuracy degradation. This
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can be explained by the distributed nature of GNNs which exploit attribute
locality as well as the distributed information typically present on graphs. This
is in accordance with the requirement that Industry 4.0 processes are resilient
to many minor failures and reconfigurable enough to overcome them through
alternative paths. Another observation is that the simplest benchmark graph
goes not necessarily yield the best accuracy, as more complex graphs have more
variability. Therefore, larger graphs are not merely a higher granularity repre-
sentation of individual processes. Instead, they offer more flexibility by breaking
down processes to elementary ones and paving the way for advanced pattern
mining algorithms relying on tensor algebra and higher order statistics. The lat-
ter can yield potentially deeper insight to what constitutes normal operation or
what causes systematic anomalies. Finally, the higher the discrete SNR is, the
more difficult the task of link prediction becomes. This shows the importance of
the role of the functional attributes to recovering edges.

4.2 Discussion

Graphs are indispensable tools for representing manufacturing processes for var-
ious reasons. First and foremost, properties tied to the underlying industrial
process are stored in vertices and edges as appropriate. In this case and depend-
ing on the application, it may be significant that past states may be retained
and accessed, implying that graph data structures supporting persistency, like
splay trees, should be used. Alternatively, process properties can well be stored
in specially marked vertices representing subprocesses or composite transitions
between the various process states. Although representing transitions with ver-
tices may sound counter-intuitive, it is in fact a valid graph design approach.

Along a similar line of reasoning discrete time steps can be represented by
dedicated vertices. Thus using these vertices as anchors temporal queries per-
taining to given interval such as when a subprocces was called or terminated can
be executed. With this information available, a process execution distribution
template can be assembled and tracked in real time as part of an operational pro-
file and checked regularly against discrepancies. This can reveal not only random
but also systemic errors. Still that comes at the expense of added complexity.

Moreover, when a certain event, task, or transition is tied to a certain prob-
ability, then the latter can be used among others to define the cost of traversing
an edge or reaching to or leaving from a vertex of a fuzzy graph, where said
cost can depend on the probability of an edge or vertex belonging to a graph.
This can form the basis of various graph potential functions. For instance, if pj

is the probability that edge ej belongs to the graph, then a candidate potential
function Ve(ej) for edges is shown in (19). Also, based on the edges ej incident
to a particular vertex vi a cost function Vv(vi) for vertices can also be defined.

Ve(ej)
�=

1
1 + p2j

and Vv(vi)
�=

1
|{ej}|

∑

ej

Ve(ej) (19)

Finally, as shown here process graphs abound with patterns shaped by factors
such as the graph growth rate, the possible types of interaction, and graph topol-
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Fig. 2. GNN accuracy for the first and four benchmarks.

ogy. Among them higher order patterns are more difficult to discover, but at the
same time they provide greater insight into the structure and the functionality
of the graph. For instance, in the case of mixed labeled triangles, many results
from classical graph theory like Sperner’s lemma or maximal colored cliques
can be applied. Because of the inherently distributed nature and self-similarity
of graphs, most higher order patterns of interest may be found locally, despite
having a global contribution, in the respective adjacency matrix Laplacian.

The importance of the proposed methodology stems from the fact that pro-
cess graphs are included in nearly all manufacturing levels ranging from simple
everyday administrative tasks, such as the timely dispatching maintenance per-
sonnel to defunct production units, to complex ones, such as the entire unified
control of job flow to a factory floor in order to meet unexpected demand spikes.
Industry 4.0 relies heavily on the inclusion of low level AI tools, such as intel-
ligent agents, for automating mundane or repeating tasks, executing dangerous
operations, and even automatically resolving most conflicts between two or more
low level processes. Additionally, human operators are delegated to supervisory
roles, intervening only when the local AI is unable to resolve an issue. To this
end they are equipped with a broad array of sensors installed in smart watches,
glasses, or cell phones and tablets with wearable electronics on the way, thus
essentially becoming mobile sensor platforms constantly on the move on the fac-
tory floor. Graph resilience is believed to be a local property, a hypothesis which
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is yet to be proven for a number of domains but it is nonetheless supported by
a substantial volume of empirical data and by intuition.

5 Conclusions and Future Work

This conference paper focuses on developing a graph neural network (GNN) for
link prediction in Industry 4.0 graphs. They are trained in two sets of attributes,
one containing only structural features and one combining them with functional
ones, specifically in the form of labels tied to the underlying industrual process
like events in system logs, intelligent agent reports, and automated telemetry.
Results with synthetic benchmark graphs of varying complexity indicate that
the additional functional information results in increased performance, even in
cases of severe discrete noise. The latter as well as the signal-to-noise ratio (SNR)
are intuitively defined with elementary set operations. Moreover, the proposed
methodology is sufficiently generic to be applied to labeled graphs from other
domains such as linguistics, graph signal processing, or social networks.

The results hint at a number of further research directions, therefore laying
the groundwork for a utilizing GNNs for process clustering, anomaly discovery,
and improved process scheduling based on attributes such as the average degree
and the decay rate of the degree distribution. Another possible research direc-
tion is to train GNNs in order to generate useful diagnostic messages to human
operators, especially to the floor crews. Moreover, when deviations are encoun-
tered, they should be explainable to an extent, so that human operators can take
swift and appropriate action as needed. Finally, the above should be part of an
integrated framework for the theory and practice and process mining where the
system design principles can be easily understood in high level terms.
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