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Abstract. Learning is the process of acquiring knowledge, skills and val-
ues, through lifelong education. Learning abilities are a�ected by the sub-
ject's cognitive skills showing how they think, process information, pay
attention and remember things. The dynamic nature of a human's men-
tal state usually impacts the aforementioned structural characteristics
of human cognition, hindering learning performance as well. Nowadays,
technological advances in Brain-Computer Interface (BCI) systems, in
combination with advanced processing methods, have paved the way for
the highly accurate capturing of human brain activity, helping to decode
cognitive and mental status to adapt the learning process. This paper
aims to present the �rst research outcomes of a study in progress. More
speci�cally, the main proposition lies in extending the basic function-
alities of our electroencephalography (EEG)-based e-learning prototype
system to deliver personalized solutions by taking into account the in-
dividual cognitive di�erences of the learners. Some primary �ndings are
showcased that investigate the potential association of cognitive style
with the power spectral features of brain activity in a speci�c context
where the subjects execute a visual task. It is anticipated that the real-
time recognition of the learner's cognitive style will help educators adapt
and advance the learning process.

Keywords: brain-computer interfaces · e-learning systems · EEG · cog-
nitive style.

1 Introduction

Several human cognitive theories and models [17] have been conceived deter-
mining internal fundamental mechanisms of human cognition when a subject
interacts with the external environment in a speci�c context executing a task.
Human cognition is multi-factorial and spans into elementary cognitive fac-
tors of the human mind such as the speed of processing, perception, atten-
tion and working memory capacity [23], [4] and high-level cognitive factors such
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as cognitive styles (e.g., Verbal/Imager, Wholist/Analyst also known as Field-
Dependent/Independent) [20], [11], [6], which suggest that individuals have dif-
ferences in the way they process, analyze, comprehend, store and retrieve infor-
mation.

The convoluted nature of human cognition unveils the importance of com-
bining cognitive science with information technology, which has evolved so far
separately [33], underscoring the interdisciplinary nature of the research. Besides,
the recent advances in EEG-based sensing techniques of brain activity and low-
cost recording devices, and Arti�cial Intelligence (AI) have further promoted and
supported the development of intelligent and adaptive EEG-based applications
[25] for several interfaces, such as mobile, augmented, virtual and mixed reality
devices, [30], [22]. It is expected that the synergy of cognitive science with AI
will further promote the functionalities of existing and forthcoming information
systems and smart devices by providing a multitude of computing capabilities
and services leveraging EEG device(s) in various human-computer-interaction
(HCI) scenarios [16].

Capitalizing on recent literature [8] on enhancing students' performance in
e-learning, more than half of the studies employed eye-tracking devices focusing
on eye movements and fewer works exploited (non-invasive) EEG for measur-
ing brain activity. Integrating BCI systems with advanced processing methods
is pivotal in educational technology. More speci�cally, by harnessing real-time
brain activity data, educators can tailor learning experiences to individual cog-
nitive styles, optimizing learning outcomes. Here, showcasing a forward-thinking
approach to pedagogy, we aim to enhance our existing EEG-based prototype
system by incorporating knowledge that could allow, in real-time, to consider
the users' high-level cognitive factors e.g., cognitive style, and use this data as
personalization and adaptation features.

The main contribution of this work is an analysis of raw EEG data processed
to acquire spectral features to quantify high-level Field-Dependent (FD) and
Field-Independent (FI) aspects of the human mind [28]. It is a work in progress.
In the next period, this analysis will be further extended, helping to comprehend
how we could make a personalized cognition-aware prototype system to provide
new perspectives and opportunities in e-learning based on the learners' cognitive
styles.

As per the structure of the paper, Section 2 presents background knowledge
from an EEG perspective. Also, some key points of our EEG-based prototype sys-
tem are mentioned in Section 3. In Section 4, some primary results are showcased
by exploiting EEG data acquired in a visual task, to understand the association
of individual di�erences (cognitive style) and brain signal frequency-domain fea-
tures. Finally, Section 5 summarizes the current paper.

2 Backgroung on EEG

The human brain area is divided into the cerebrum, cerebellum and brainstem.
The cerebrum subarea mainly controls high-level functions (e.g., complex think-
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ing) and is separated into four main lobes, each related to di�erent functions.
The frontal lobe is responsible for problem-solving, emotions, movement, and
speech. The parietal lobe is also involved in problem-solving, pain and taste.
The temporal lobe is responsible for hearing and memory, while the occipital
lobe relates to visual processing tasks.

EEG is a non-invasive technique for capturing the brainiac activity detected
by electrodes arranged to the scalp according to the standardized 10/20 interna-
tional system. Each electrode is identi�ed with the capital letters F (Frontal), P
(Parietal), O (Occipital), (Temporal) and C (Central) [29] corresponding to the
brain lobe in which they are located followed by a number; odd numbers in the
left hemisphere and even in the right one. For analyzing EEG biosignals activity,
�ve frequency bands are mainly studied. In Table 1, a summary of EEG waves,
frequency bands, brainiac regions and related activity is demonstrated.

Table 1. EEG waves properties [29], [31]

Wave Band Hz) Lobe Activity

δ 0.1-3
frontal (adults),

posterior (children)
wave of high amplitude

dreamless sleep, unconsciousness

θ 4-7
Fz to Cz

(frontal midline)

idling, response reaction,
dreaming, imagining,

larger in meditative concentration,
cognitive processes

α 7-12
both hemispheres,

P, O,
C at rest

relaxation, resting eyes closed,
visual processing
activity over the O

β 12-30 F, P, O

resting state with eyes closed
thinking, reception, transmission,

processing, integration,
concentration

γ 30-100
somatosensory
cortex region

two senses combined,
object recognition,

short memory matching.

EEG activity is classi�ed into spontaneous EEG and evoked potentials (EPs).
In the EPs, brain activity is associated with the event (psychological or physi-
cal) [15] and includes Steady-state visual evoked potentials (SSVEPs) and P300.
SSVEP is measured at the occipital (O) lobe when a visual stimulus is repeat-
ing itself at a speci�c frequency. The P300 is a positive event-related potential
detected 300ms after an odd stimulus is presented among regular ones [21]. In
this study, we focused on spontaneous EEG as this is more relative to grasping
a user's cognitive and mental state.

Non-brain signals, called artifacts usually corrupt the EEG signal data. Such
signals are discerned from the brain source signals as they di�er in shape and
amplitude (higher). The contaminated brain signals should be properly cleaned
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to obtain a reliable signal for analysis. The artifacts are categorized into physi-
ological and non-physiological [2]:

� Physiological: heart pulse, breathing, sweating, or eye movements (e.g. blink-
ing), muscle contractions (such as movement in general or tongue movement),
talking, chewing [14].

� Non-physiological: power line noise, electrode or wire movements, excess
quantity or drying of the paste or gel.

Dedicated electrodes can detect eye movements and cardiac pulse; this helps
detect these artifacts as independent signals without applying any processing
technique for extracting them from the brain signals.

3 A brief overview of the EEG-based prototype

A prototype web system belonging to passive BCI was developed [2] to simu-
late an e-learning environment where learners attend online lectures or consume
learning content and the users' mental state is monitored and captured in real-
time using an EEG device. Such a system can be leveraged during Massive Open
Online Courses (MOOCs) or used by schools or universities to support the learn-
ing process. A low-cost EEG device was used as it can implicitly grasp the user's
current mental state to identify if the student is concentrated or relaxed.

In a learning environment, such a system could employ a di�erent EEG de-
vice with di�erent capabilities and therefore support the educational process
by measuring, apart from concentration/relaxation, other aspects of the mental
state such as the students' confusion level [27] during (online) lectures, attention
levels, cognitive workload, etc., when students try to solve complex problems.
Indeed, the latest advances in BCI systems and EEG-based signal sensing tech-
nologies and devices allow for gathering su�cient data to continuously monitor
humans' mental and cognitive state [5].

The system has been designed and developed following the principles of cog-
nitive science, EEG and signal processing. Our purpose is to enhance its func-
tionality by making it adaptable to advanced cognitive traits of the human brain
and, speci�cally, the users' di�erences - cognitive style when interacting with an
interface for executing tasks [13] delivering personalized solutions.

In the following, we present two key subsystems, their functionalities and
potential approaches for processing and modelling human cognition assuming
objective EEG measures, thus developing a credible human cognition-centred
system.

3.1 Preprocessing

Acquiring enough raw data through an EEG recording device (signal acquisi-
tion), signals' preprocessing [26] is applied to increase signals' quality by remov-
ing power line noise through appropriate �ltering techniques, artifacts and/or
bad segments [12].
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Filtering: For EEG signals �ltering, a band-pass �lter was considered to keep
data in speci�c frequency bands α, β, γ, δ, θ [19]. Also, notch �ltering was deemed
to remove power line noise at 50/60 Hz [12].

Artifacts Removal: The most common methods for artifact removal [10] are
Canonical Correlation Analysis (CCA), Artifact Subspace Reconstruction (ASR)
[1] and Independent Component Analysis (ICA) [3]. CCA is a statistical ap-
proach applied as a Blind Source Separation (BSS) technique that removes mus-
cle contamination using EEG data recordings and a temporally delayed copy
of them [9]. ASR is a real-time component-based technique for rejecting large-
variance components. ICA is a time-e�cient [24] and simple technique, and thus,
the most preferable; it decouples mixed signals into their various components,
and in EEG is used for separating brain data from "noisy" components, i.e.
muscle and blink artifacts [12]. Currently, the system considers the ICA method
for handling artifacts but we aim to incorporate more e�cient methods.

3.2 Individual Di�erences modelling based on Power Spectral

Density

Generally, the de�nition of a cognition model may be based on the extraction
and selection of appropriate EEG features in the frequency domain, time domain
or time-frequency domain [34], [26]. Power Spectral Density (PSD) is the most
frequent and important EEG feature. PSD captures the power distribution of
the signal in the frequency domain [32] focusing on �ve basic frequency bands:
δ (0.5�4 Hz), θ (4�8 Hz), α (8�13 Hz), β (13�30 Hz), and low γ (30-42 Hz). In
clinical and research settings, these bands are associated with di�erent mental
and cognitive states; their dominance may di�erentiate among the four main
lobes F, C, P, and O [31], and depends on the task at hand [7]. Therefore, the
next section will focus on understanding whether PSD features can be used to
capture the cognitive di�erences among individuals.

4 Data Analysis

To understand the mechanisms involved in capturing the activity of the human
brain when a visual task is performed and to �nd out potential di�erences ac-
cording to the cognitive style of each individual, we chose to experiment with
a dataset obtained in the context of the Picture-Gesture Authentication task,
that the subjects executed while their EEG signals were recorded. The subjects
were undergraduate students from the polytechnic and the primary education
departments. Their age was in the range of 21 to 27. Also, there were 2 males and
2 females. The brain activity throughout the execution of the task was captured
by a BioSemi EEG recording device of 32 electrodes, placed according to the
international 10�20 system, at a sampling frequency of 2048 Hz, with a 24-bit
resolution. The recorded data was down-sampled to 512 Hz to reduce the data
size.
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Also, for the subjects, it was known in advance their cognitive style as they
had executed the Group Embedded Figures Test (GEFT) [18], categorizing them
as Field Dependent-Field Independent (FD-FI). A limitation of this data is the
number of subjects; it consisted of only one FD and three FI subjects.

The acquired raw EEG signals of the subjects were processed o�ine (namely,
preprocessing with Butterworth bandpass �lter, powerline noise elimination with
notch �ltering at 50Hz and the ICA method for artifacts handling (identi�cation
and removal). In the following, to extract the average band power feature, an
FIR digital �lter with a Kaiser window was designed for all interested frequency
bands (δ, θ, α, β, γ), and the average normalized power was estimated per spatial
channel of brain areas. Figure 1 illustrates the key steps of EEG signal processing.

Rereferencing

Artifacts
Removal ICA 

Powerline Noise
Removal - Notch
 Filtering at 50 Hz

FIR Filter - Kaiser
Window 

Band Power
δ, θ, α, β, γ

Butterworth
 Filtering 

(0.5 - 64) Hz
EEG Raw

Data

PreprocessingData Acquisition

Features
Extraction

Fig. 1. Overview of EEG signals acquisition during the visual task, data preprocessing
and features extraction.

Our analysis started with the hypothesis that there was a signi�cant dif-
ference between FDs-FIs in the average power of EEG signals throughout the
subjects' interaction with the application by trying to log in via a graphical
password. In Tables 2, 3, we present the average values of the aforementioned
feature of the channels located in frontal F(FP1, FP2, F7, F8, F3, F4, Fz), cen-
tral C(FC1, FC2, FC5, FC6, C3, C4, Cz), parietal P(CP1, CP2, CP5, CP6,
P7, P8, P3, P4, Pz ) and occipital O(O1, O2, Oz, PO3, PO4) areas of the hu-
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man scalp. In this activity, the participants tried to remember and apply the
graphical password, so their activity was associated with the �login� phase of
the application. The �rst results indicated small scale di�erences among FD-FI
subjects which are re�ected in the average power of the EEG time series data
of the spatial channels. In particular, from the speci�c measurements, it was
estimated that the average power of FI was approximately 1.3 times the average
power of FD. Also, from our �ndings, it was observed that beta waves in the
Optical and Parietal areas presented the highest average power. The outcomes
are justi�ed by the fact that beta waves in these areas are prominent during
states of thinking, learning, concentration and problem-solving.

Table 2. Average normalized power at δ, θ, α and β, γ bands per cortical area F, C, P,
O for FD.

β α θ δ γ

Frontal 0.1973 0.1489 0.1349 0.1290 0.0644

Central 0.2718 0.1968 0.1770 0.1686 0.1047

Parietal 0.3346 0.2433 0.2190 0.2087 0.1246

Occipital 0.3443 0.2559 0.2311 0.2207 0.1133
Table 3. Average normalized power at γ, δ, θ, α and β bands per cortical area F, C, P,
O for FIs.

β α θ δ γ

Frontal 0.2555 0.1929 0.1748 0.1671 0.0837

Central 0.3531 0.2557 0.2300 0.2191 0.1359

Parietal 0.4348 0.3162 0.2846 0.2712 0.1623

Occipital 0.4470 0.3323 0.3002 0.2886 0.1469

5 Conclusions

In conclusion, in the context of this paper, motivated by the need to enhance
students' cognitive performance in online learning, basic research concepts and
principles for human cognition modelling with EEG are discussed. Cognitive
Psychology is the cornerstone for the conceptualization of a cognition-centered
system while signal processing focuses on the elicitation of EEG features to
quantify individual di�erences re�ected in students' cognitive style. The �ndings
presented in this study primarily have a qualitative nature; although this pri-
mary investigation shows small di�erences in the average power of EEG signals
between the FD and FI while executing the visual task, statistical analysis could
not be performed with a limited number of subjects. Therefore, our prospects
rely on performing inferential statistical analysis to validate hidden e�ects and
identify crucial factors correlating individual di�erences with brain signal pat-
terns. The �rst outcomes indicated that EEG is a candidate measure to quantify
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individual cognitive di�erences that could be used to train future e-learning sys-
tems to provide personalization. While there are challenges ahead, including the
need for further validation and re�nement of the proposed methods for concrete
modelling of complex human cognition, the paper's insights have the potential
to contribute to future developments in the �eld.
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