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Abstract—Intelligent agents (IAs) are autonomous pieces of
software designed to be deployed to and operate on infrastruc-
ture, whether physical or digital, and perform various tasks on
them ranging from integrity check and structure discovery to
functionality monitoring and information collection. Their task
performing capability has been considerably increased with the
recent advent of machine learning. An important parameter of
IAs operating on networks such as the Web is their trajectory,
which in many engineering scenarios depends heavily on random
outcomes taking place at each vertex visited by the IA. In order
to study the probabilistic properties of the trajectory length, said
outcomes instead of being modeled or simulated are computed
as the result as a game taking place between the vertex and the
IA, developed in the Thespian framework for Python, and the
vertex. The latter selects a random but fixed strategy, whereas
the IA can adapt to learn this strategy either by observing
the entropy of the choices of its opponent. If IA loses, then
it backtracks, otherwise it chooses its next destination with a
preferential attachment scheme. The mean, variance, skewness,
and kurtosis of the trajectories of IAs operating on three scale-
free graphs generated by NetworkX. Emphasis was placed on
proper Pythonic code as many major Python modules such as
threads, for generating game instances, Counter instances from
collections to keep track of player choices, and functools for
map/reduce functionality. Results indicate that IAs learning the
opponent strategy have longer and richer network trajectories
in terms of vertices, indicating the importance of learning.

Index Terms—intelligent agents, random walks, network tra-
jectory, Thespian, NetworkX, strategy estimation, entropy, higher
order data, collections, threading, functools, argparse, globals

I. INTRODUCTION

Intelligent agents (IAs) are autonomous pieces software
designed to perform a broad spectrum of tasks including but
not limited to structural integrity, link prediction, and even
negotiation with other IAs. This functionality increases the
digital awareness of their operators by collecting information
about the environment they operate in. Interestingly, as IAs
keep functioning therein, they generate information of their
own, in addition to that they collect regularly, which can be
mined. A major such piece of information for IAs operating
in networks is the length of their trajectory expressed in
the number of edges crossed. By probabilistically mining it,
knowledge about the underlying network and about how easily
the IA can cross it can be obtained.

The IAs presented and examined here traverse the network
in order to visit each vertex. However, an opponent at each
vertex the IA is currently visiting challenges the latter to a
rock/paper/scissors (RPS) game whose outcome determines
the next IA move. Specifically, if the IA emerges as a winner,
then it chooses the next vertex to visit based on a preferential
attachment policy, otherwise the IA backtracks to the vertex it
came from. The RPS game was selected as it is straightforward
to collect its results. Moreover, the IA moves based on the
outcomes of actually played games instead of computing or
simulating the probability of IA victory in each game.

The twofold primary research objective of this conference
paper is to collect and perform a higher order probabilistic
analysis of the lengths of the IA trajectories including the
computation of skewness and kurtosis as well as to analyze
the difference in performance of IAs relying on strategy esti-
mation in each game from IAs which do not. As a secondary
objective, heavy emphasis was placed on developing Pythonic
code in order to achieve the desired functionality as well
as to translate probability theoretic concepts to programming
ones as determined by PEP81 complete with docstrings as
stated in PEP 2572. Additionally, the IA was implemented in
the Thespian3 framework and the three synthetic benchmark
datasets were obtained from the NetworkX4 graph library. The
methodology presented here can be applied to the study of
network propagation phenomena such as meme diffusion is
social media, SIR models, and the spread of biological virus.

The remainder of this work is structured as follows. In
section II the recent scientific literature regarding IAs, Python
modules, and parameter estimation is briefly reviewed. In sec-
tion III the IA components and mechanics and the probablistic
strategy estimation are explained, whereas in section IV the
RPS source code is described. Results is explained in section
V. Possible future research directions are given in section
VI. Capital calligraphic letters symbolize random variables
(rvs) and normal lowercase scalars. Technical acronyms are
explained the first time they are encountered in text. Finally,
the notation of this work is summarized in table I.

1https://peps.python.org/pep-0008
2https://peps.python.org/pep-0257
3https://github.com/thespianpy/Thespian
4https://networkx.org978-1-xxxx-xxxx-xx/xx/$31.00 ©2023 IEEE



TABLE I
NOTATION SYNOPSIS.

Symbol Meaning First in
4
= Definition or equality by definition Eq. (1)
{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (8)
〈sk〉 Sequence with elements sk Eq. (6)
(t1, . . . , tn) Tuple with elements t1, . . . , tn Eq. (12)
|·| Set or sequence cardinality functional Eq. (6)
ŷ Estimator of quantity y Eq. (8)
prob {Ω} Probability of event Ω occurring Eq. (2)
E [X ] Expected value of random variable X Eq. (3)
Var [X ] Variance of random variable X Eq. (3)
deg (v) Degree of vertex v Eq. (2)
Γ (v) Neighborhood of vertex v Eq. (2)

II. PREVIOUS WORK

IAs are designed to operate autonomously in infrastructure
[1], whether physical [2] or digital [3], to perform through
machine learning (ML) a wide range of critical tasks such
as link prediction [4], secure communications in unmanned
aerial vehicles (UAVs) [5], and cooperation in autonomous
vehicles [6]. In network environments such as social media
[7], which can be represented by ordinary [8] or fuzzy graphs
[9], or smart cities [10] IAs can be particularly effective
as the modular and commuity-based graph structure [11]
allows them to roam in order to collect information [12]
about the network state such as expansion potential [13] and
increase digital awareness [14] through state estimation [15]
and swarm intelligence [16]. In such environments multi-
objective optimization [17] and trajectory prediction in multi-
agent engineering scenarios [18] are key problems. In settings
like recommender systems [19] [20] the user acceptance of
IAs is critical [21]. IAs can also be deployed in blockchains
to negotiate smart contracts [22], collect state information [23],
and verify consensus [24]. A survey for IA applications is [25].

Parameter estimation is an established field in signal pro-
cessing [26] where a scalar parameter or a vector of parameters
need to be inferred from a number of possibly corrupted
measurements [27]. In classical estimation said parameters are
considered fixed and they are estimated through probasilictic
techniques like least minimum variance estimation [28] or
model-based techniques like deterministic least mean squares
[29] and maximum likelihood [30]. On the contrary, Bayesian
estimation is also model-based but it treates the parameters
as realizations of a random process [31]. Hence, a prior
estimation is additionally required [32].

Python modules cover a broad spectrum of functionality
such as behavioral analysis [33] and JSON parsing [34].
Functional programming [35] is an established programming
paradigm where priority is placed on functions, considered
first-class citizends, and their composition [36]. Besides purely
functional languages such as Haskell, functional elements,
mainly in the form of lambda expressions, can be found
in Scala [37] and Java [38]. Functional data structures are
described in [39] and functional aspects include map, filter,
and reduce [40] [41].

III. INTELLIGENT AGENT DESIGN

A. Random Trajectories

In order to successfully carry out their task, the IAs typically
have an architecture consisting of the following components:
• Sensors in order to perceive its environment.
• Actuators to act on its environment.
• A decision making scheme fed by sensor information.
• A state vector where the IA status is stored.
The trajectory an IA makes while traversing a network

can be mined through statistical analysis or ML for patterns
in order to extract working knowledge about the underlying
network structure in addition to the information IA collects.
In the context of this work the IA objective is to visit every
vertex, which is a typical assignment. However, in order for
it to be allowed to move, the IA must win an RPS game. The
bot opponent, for brevity termed bot or opponent, of the IA
selects independently and randomly one of the strategies of
table II. The IA can be configured to either estimate the bot
strategy or to select a strategy at random from the same table.

A number of N runs, shown in table VI, was executed. In
such run the IA was first configured to estimate the bot strategy
and then to select a strategy at random and the trajectory
length, denoted respectively as Le and Lr, was recorded and
the ratio L of equation (1) was formed.

L
4
=
Lr

Le
(1)

When IA in a vertex u beats its opponent, then it can move
to one of the neighbors of u. The probability of IA moving
from vertex u to a neighboring v is computed by a preferential
attachment policy shown in equation (2).

prob {u→ v} ∝ deg (v)∑
s∈Γ(v) deg (s)

(2)

The values of the trajectory length ratio of equation (1) can
be considered as samples of an rv L. Once its probabilistic
mean and variance, respectively denoted as E [L] and Var [L],
can be computed from the respective sample counterparts un-
der mild ergodicity assumptions, then higer order probabilistic
metrics can be computed. A common third order metric is the
skewness κ3 defined as in equation (3). On the condition that
κ3 comes from a unimodal distribution, when κ3 is positive,
then the tail of the distribution is to its right, while when it is
positive, then its tail is to its left.

κ3
4
=

E
[
(L − E [L])3

]
Var [L]3/2

(3)

Another higher order probabilistic metric is kurtosis, which
is a fourth order metric evaluating the concentration around
the mean and defined as in equation (4).

κ4
4
=

E
[
(L − E [L])4

]
Var [L]2

(4)



B. Strategy Estimation
In this game the bot player is configured such that at each

round of each duel it makes a move which is independent of
the past ones and according to a preselected stationary policy.
In other words, the distribution of the next move made by the
bot player is given in general by equation (5). Observe that
said distribution generates categorical data. Moreover, decision
independence precludes Markov chain type analysis.

sk
4
=


rock, prob {sk = rock} = pr

paper, prob {sk = paper} = pp

scissors, prob {sk = scissors} = ps

(5)

A move sequence 〈sk〉 of length n follows the trinomial
distribution shown in equation (6):

prob {s} 4
=

(
n

nr

)(
n− nr
np

)
pnr
r pnp

p pns
s , |s| = n (6)

The distribution of (6) holds under the constrtaint pair of
(7). This ensures that the distribution adds up to one.

nr + np + ns = n

pr + pp + ps = 1 (7)

An estimation p̂x of each of the three probabilities px
of equation (6) can be constructed as a function gx(·) of
the frequencies of appearance, or equivalently the number of
appearances, of rock, paper, and scissors denoted respectively
as nr, np, and ns as shown in equation (8).

p̂x
4
= gx(nr, np, ns), x ∈ {r, p, s} (8)

One estimator originating directly from equation (6) but
applied to a more generic context is equation (9), which
coincides with the frequentist approach coined by Laplace.

p̂x
4
=

nx
nr + np + ns

, x ∈ {r, p, s} (9)

Based on the probability estimation the entropy of the
opponent can be computed. In table II the entropy for the bot
player strategies is shown. Equation (10) was used. Therein the
base of logarithm b determines the base in which information
is measured. Given that each logarithm is of the same order
of magnitude, the selection of b does not critically influence
the value of H . In this case b equals two and information is
represented in bits.

H
4
=
∑
k

pk logb
1

pk
= −

∑
k

pk logb pk (10)

Quite often reduce is combined with lambda. For instance,
in the following code segment the value of entropy is updated
if and only if the value of argument p is not zero as otherwise
a numerical error would occur.

import f u n c t o o l s as f
import numpy as np

v a l s = d . v a l u e s ( )
H = f . reduce ( lambda H, p : \

H−p∗np . l og2 ( p ) i f p e l s e H, v a l s , 0 )

TABLE II
STRATEGIES AND THEIR ENTROPY.

Strategy Distribution Entropy (bits)
uniform all moves 1/3 log2 3 (max)
last play opponent’s last move between 0 and log2 3
rockx3 60% rock, 20% paper, scissors 1.3709
rockx2 50% rock, 25% paper, scissors 1.5
rockx0 50% paper, 50% scissors 1
rockx1 100% rock 0 (min)

Lambda expressions, functional elements, or even func-
tional programming as a paradigm is supported in prominent
programming languages such as Java5 and C++6. Moreover,
in newer languages such as Julia7 the lambda expressions,
therein called anonymous functions, are an integral part of the
original language specifications8. Finally, in purely functional
languages such as Haskell9 and Scala10, lambada functions not
only are available, but they are first class citizens, namely the
primary means of computation.

IV. RPS CODE OVERVIEW

A. Overview

The source code comprises of the files shown in table III.
Therein is also shown a brief description of the respective file
and the subsection which describes their functionality. The
game relies heavily on the players exchanging messages in
order to monitor RPS progress and keep track of moves.

TABLE III
SOURCE CODE FILES.

Name Description Shown in
bg client app.py Client application Sec. IV-B
bg client.py Client configuration Sec. IV-C
bg client player.py Basic player class Sec. IV-D
bg client custom players.py Opponent player class Sec. IV-E
bg client my player.py IA player classes Sec. IV-F
bg server app.py Server application Sec. IV-G
bg server.py Main server file Sec. IV-H
bg server worker.py RPS game logic Sec. IV-I
bg messages.py Server/client messages Sec. IV-J

The event driven nature of the game means a non-linear
source code execution. Moreover, the IA and the bot need not
be on the same computer, in which case the network overhead
should be taken into consideration.

Notice that in order to keep from ... import commands
simple, all source files have been moved to the same directory.
In this way some initial problems stemming from directory
dependencies were automatically resolved.

Before a print operation takes place, a lock is obtained to
ensure that only one thread displays a message. Moreover,
all messages are sent to the standard stream sys . stderr ,

5https://www.infoworld.com/article/2078836/love-and-hate-for-java-8.htm
6https://en.cppreference.com/w/cpp/language/lambda
7www.julialang.org
8https://docs.julialang.org/en/v1/manual/functions
9https://wiki.haskell.org/Anonymous function
10https://docs.scala-lang.org/scala3/book/fun-anonymnous-functions.html



which is the proper stream for diagnostic and error messages.
Moreover, for each such operation the flush option is enabled,
meaning that each diagnostic message is guaranteed to appear
on the screen the time the programmer intends to. Otherwise,
given the buffered nature of I/O operations, there is a non-
negligible probability that a program may crash before a
message appears on screen, giving thus the wrong idea about
the code crashing point. When flushing is enabed, however, all
outbound messages have been properly displayed before the
exception stack is unwound. Therefore, the developer has the
correct perception about where code execution has reached
and can look for the right causes. In order to ensure this,
the partial method creates a restricted version of the generic
print which sends its input to the desired stream with flushing.
Recall that in order for this to work, the target function must
support a keyword-pair structure of arguments.

import f u n c t o o l s as f

f f p r i n t = f . p a r t i a l ( pr int , \
f i l e = s y s . s t d e r r , f l u s h =True )

B. File bg client app.by

This is the main client file, namely the file IA has to start in
order for its player class to be initiated and for the connection
to be set up. This file creates a client configuration dictionary
and passes it to the main function of the bg client.py. Note that
the fields silent and verbose are set to None since they will
be filled by the values of the server configuration dictionary.

C. File bg client.py

This is the module containing the main client function,
which is responsible for creating the various client players
according to the appropriate command line arguments.

The globals () function is used early in this file in order
to return a dictionary with every global variable11 and then
instantiate a player class, either an IA or a bot one depending
on who is calling the rps client main() function. The latter
is determined by the class name stored in the field class of the
client configuration dictionary. As the bot player initialization
function init () accepts different arguments than its
counterparts of the IA classes, care is taken before invoking
it. The variable klass () is an alias of the right initiator.

One the client is connetect to the server network socket, an
initial message from the client is sent. Notice that in order to
do so, a lock is obtained so that other threads may not print
at the same time a message as well. The pair of functions
acquire () and release () form a safe context manager, similar
to the well-known with ... as one.

Note that a general technique after receiving over the net-
work and deserializing a message using the pickle library is to
check whether it is of the expected type. This is accomplished
with as assert condition.

Since the bot player class does not have methods for keeping
track of who the opponent is and for monitoring the opponent

11https://docs.python.org/3/faq/programming.html

moves, a check is made to determine whether the player class
currently active has an attribute of the right name through the
hasattr function12 followed by a second check through the
callable method to determine whether this attribute appears
to be callable. The latter means that even if callable returns
True, a function call with that attribute may still fail –a case
not happening here by design, whereas if it returns False, then
a function call with this attribute is bound to fail13. Because
of the short-circuit evaluation14 of logical and in Python, if
the first check fails, then the second one is not even executed.

D. File bg client player.py

The rudimentary player class is stored in this short source
file. This class is used to build the standard bot and IA classes
through simple inheritance, even though Python is one of
the few modern programming languages supporting multiple
inheritance15 like C++.

Another highlight is that since this is an elementary
class without a fully fledged functionality, the method
game result() is just a placeholder. To emphasize this, a
NotImplementedError is exception raised if this method is
called instead of just putting a pass instruction in its definition.

E. File bg client custom players.py

In this source file the standard bot player class can be
found. If the init () is called with an argument of None,
then a strategy out of the possible ones is picked at random.
Otherwise, the prespecified strategy is selected and played out
throughout the entire game.

Bias can be inserted in the method next move() of the bot
class by removing from or inserting to the initial list the rock
option one or two times. Additionally, the bot can be instructed
to play only rock as a move. Of course there is nothing special
with this move, as taking the same steps with any of the other
two moves would create similar distributions. Notice that in
the selection of the next move the copy() method is needed,
since the append() and remove() functions operate in-place
and, hence, their return value as a result is None.

F. File bg client my player.py

In this module the IA player class is defined. The latter
inherits the majority of its functionality from the former, with
the single exception of the function determining its next move.
In this way, code is reused and the differences between the two
classes become clearly visible. In table IV the methods of the
IA class are explained.

At the heart of the IA player class lies a composite data
structure where:
• A dictionary with keys the opponent ids as returned by

the game server.
• Each corresponding value is a list with two elements:

12https://docs.python.org/3/library/functions.html#hasattr
13https://docs.python.org/3/library/typing.html
14https://www.geeksforgeeks.org/short-circuiting-techniques-python
15https://realpython.com/inheritance-composition-python



TABLE IV
IA PLAYER METHODS.

Method Description
init Initializer
str String conversion
repr Object representation

update moves Keep track of opponent moves
update opponent Prepare for a new opponent
update winner Keep track of duel results
get encounters Return duel result history
rec freq Recommendation based on moves
rec strategy Recommendation based on entropy
next move Get next move

– A dictionary with each possible move as keys and
an integer counter as value.

– A bool flag indicating whether the player is the IA.

Recall that int and str types are hashable and they can
be dictionary keys. When this structure is initialized or when
a new opponent in encountered, then a new entry is created
using the dictionary update () method, which works on both
existing and new structures. Should this measure had not been
taken, a KeyError exception would have been raised.

G. File bg server app.py

This module must be started in order to set up the server
controlling the game and spawing any bot players necessary.
Since this file controls a considerable amount of functions, it
also accepts a number of command line arguments through
the argparse module in order to configure this functionality.

H. File bg server.py

This is the main server file where the connections to players,
whether IAs or vertex opponents, are established and the game
is executed. Moreover, the main server function is an infinite
while loop which can be only terminated when an exception
occurs. In the exception hadling code care is taken to close
the socket before exiting the program.

I. File bg server worker.py

This file contains the code for the actual execution of the
game once the establishment of network sockets, the initial
communication, and the game setup are done. Moreover, the
game logic is implemented here.

J. File bg messages.py

All possible messages sent from the server to client and
vice versa are defined in file bg messages.py. Messages with
originally three arguments or more were converted to accept a
dictionary with the individuals arguments as fields. Moreover,
in order to secure message integrity, every initiator has an
assert clause. Table V contains the messages as well as basic
information about them.

V. RESULTS

The configuration parameters of the RPS game as well as the
synopsis of the three synthetic benchmark datasets are shown
in VI. Implementation was done in Python 3.12, the latest ver-
sion currently available. The Thespian framework implements
the Actor model in Python and relies heavily on message
passing between the entities. The NetworkX library offers a
wide array of functionality pertaining to graphs, including the
generation of scale-free graphs with a predetermined number
of vertices and density. NetworkX defines the density ρ for a
graph with nv vertices and ne edges as in (11)16.

ρ
4
=

2ne
nv(nv − 1)

(11)

Therefore ρ is defined as the ratio of the number of edges
of the graph to the number of edges of a complete graph with
the same number of vertices. For directed graphs ρ is defined
as half of that in (11). The synthetic benchmark graphs used
here are undirected. Also please note that this definition of ρ
differs from the one frequently used in the scientific literature.

From a graph structure perspective, the graph density ρ
essentially determines on the average the number of choices
the IA has when it wins an RPS game. Along the same line of
reasoning, the graph diameter roughly determines how difficult
is to reach the outermost vertices, which in turn may lead to
longer trajectories if it is sufficiently high.

In table VII the results of the code execution with D duels
of R rounds each per vertex are shown. The total number
of games equals the number of vertices visited by the IA.
Each table entry has the structure of equation (12). Since
the game results are totally independent from the underlying
graph topology, the IA and bot victory probabilities have been
averaged over all three benchmarks. Also, the tie probability
is not shown, as it is redundant information. If a tie occurs,
then a new game starts on the same vertex.

(prob {IA wins} ,prob {bot wins}) (12)

Table VII should be interpreted as follows: The last row
has the probabilities of victory, defeat, and tie for IA when it
is configured to estimate bot strategy, whereas the remaining
of the table has the same statistics when both the IA and the
bot each randomly select a strategy. Each column corresponds
to a bot strategy, while each row to an IA strategy. From the
entries of table VII the following conclusions can be drawn:
• Each strategy against itself practically lead to tie.
• There was a symmetry between strategies played by bots,

namely that the streategy pair (S1, S2) had roughtly the
same results as that of (S2, S1).

• The most effective strategy is uniform, which is the most
unpredictable, followed by rockx2. This is expected given
the entropies of these strategies.

• The worst one is rockx1, which is totally predictable.
Moreover, it can be easily countered by an opponent
constantly playing paper.

16https://networkx.org/documentation/stable/reference/generated/
networkx.classes.function.density.html



TABLE V
MESSAGE TABLE.

Class Sender Meaning Parameters
ServerMsgHello Server Configuration message Silent and verbose flags, rounds, duels
ServerMsgDuelStart Server Duel notification Player ids, player and IA flags
ServerMsgRoundStart Server Round notification Round id
ServerMsgRoundWinner Server Round winner Player ids, player moves, winner id
ServerMsgDuelWinner Server Duel winner Winner id
ClientMsgHello Client Connection message Name, version, IA flag
ClientMsgOk Client General acknowledgement Message
CientMsgRoundMove Client Move in round Move, player id

TABLE VI
CONFIGURATION PARAMETERS.

Parameter Value
Number of runs N 100000
Number of RPS duels D 101
Number of RPS rounds R 201
Number of vertices nv 10000 / 10000 / 10000
Number of edges ne 90000 / 70000 / 60000
Density ρ 0.00009 / 0.00007 / 0.00006
Diameter δ 11 / 12 / 14

• The last strategy is a peculiar case as the player employ-
ing it is totally dependent on the other. Still, it leads to
a lot of ties, especially when the other plays rockx1.

In table VIII the probabilistic metrics of the trajectory length
ratio L of (1) are shown. From the entries of this table the
following conclusions can be drawn:
• The mean of L shows that on average the IA has to cross

considerably more times the number of vertices when the
bot strategy estimation is disabled.

• The relatively large value of the variance means that L
is not very concentrated around its mean.

• The positive skewness indicates that the majority of the
values, namely the tail of the distribution, of L is to the
right of its mean.

• The kurtosis also seems to support the case that L
flustuates. This could be possibly attributed to the random
nature of the RPS game.

• The sparser and the more difficult to traverse the graph
is, the higher the mean value of L and its fluctuations
are, indicating more variability.

Entries from table VIII tend to support the hypothesis that
enabling the IA to estimate the strategy of the bot in each
vertex through the entropy of the distribution of the decisions
of the latter reduces considerably the number of hops the IA
must do in order to visit every vertex of the underlying graph.

VI. CONCLUSIONS AND FUTURE WORK

The focus of this conference paper is to perform higher
order probabilistic analysis of the random trajectories of an
intelligent agent (IA) operating on network infrastructures. At
each vertex a bot opponent challenges the IA to a game of
rock/paper/scissors (RPS). Depending on the outcome, the IA
selects a neighboring vertex based on a preferential attachment
rule if it is victorious or the IA backtracks to the previous

vertex. Two scenarios were tested, depending on whether the
IA could estimate the entropy of the decision distribution
of its opponent or not. Results indicate that when that was
true, the IA trajectory length was considerably shorter. The
IA was implemented in the Python Thespian framework and
the RPS game in Python utilizing modules like argparse,
collections, threads, and functools. The RPS game was chosen
such that the probability of the IA successfully advancing from
one vertex to one of its neighboring ones to be determined
by an actual game instead of being computed or simulated.
This can be beneficial in the analysis of network propagation
phenomena such as meme diffusion or virus propagation.

This work can be expanded in a number of ways. First and
foremost, strategy estimators such as chi square test and run
test can be implemented, both of which rely on the analysis
of long sequences. Additionally, the proposed technique can
be applied to larger benchmark networks to test its scalability.
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TABLE VII
IA VS BOT RESULTS (AVERAGE OVER THE THREE BENCHMARKS).

bot → uniform last rockx3 rockx2 rockx0 rockx1
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“Unsupervised state representation learning in atari,” Advances in neural
information processing systems, vol. 32, 2019.

[16] M. Schranz, G. A. Di Caro, T. Schmickl, W. Elmenreich, F. Arvin,
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