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Abstract: Intelligent agents (IAs) are highly autonomous software applications designed for performing tasks in a broad
spectrum of virtual environments by circulating freely around them, possibly in numerous copies, and taking
actions as needed, therefore increasing human digital awareness. Consequently, IAs are indispensable for large
scale digital infrastructure across fields so diverse as logistics and long supply chains, smart cities, enterprise
and Industry 4.0 settings, and Web services. In order to achieve their objectives, frequently IAs rely on
machine learning algorithms. One such prime example, which lies in the general direction of evaluating the
network structure integrity, is link prediction, which depending on the context may denote growth potential or
a malfunction. IAs employing machine learning algorithms and local structural graph attributes pertaining to
connectivity patterns are presented. Their performance is evaluated with metrics including the F1 score and
the ROC curve on a benchmark dataset of scientific citations provided by Neo4j containing ground truth.

1 INTRODUCTION

Intelligent agents (IAs) are advanced and flexible au-
tonomous piece of software tailored for pursuing mul-
tiple and potntially conflicting objectives whose rank-
ing may change over time while operating in an evolv-
ing environment which may not be fully known (Li
et al., 2022a). In this sense IAs are invaluable for sup-
porting digital awareness extending the human pre-
scient ability with regards to digital infrastructure.

In order for IAs to be effective in their respec-
tive missions, they are frequently augmented with
machine learning (ML) capabilities. For instance, it
would make sense to use ML to enhance communi-
cation reliability in an industrial or a smart city con-
text as communication channels are in practice con-
stanctly subject to various sources of noise depending
on the operational setting. This holds especially true
in distributed systems where wired links are corrupted
by white Gaussian noise, while mobile links are prone
to lognormal noise, shadowing, or even intersymbol
interference (ISI) from any nearby links.

This has been further enhanced with the advent of
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graph signal processing (GSP), a field which has re-
cently garnered intense interdisciplinary research at-
tention as it allows for established ML techniques to
be applied on a graph mining setting. IAs can bene-
fit from GSP since most of the infrastructure, whether
digital or physical, they routinely operate on is or at
least can be represented by a graph. Common exam-
ples include long supply chains, power and water net-
works, and computer networks.

The primary research objective of this conference
paper is the development of an IA capable of perform-
ing link prediction based on a wide array of ML algo-
rithms running on local attributes such as the Adamic-
Adar index and the resource allocation metric. Since
numerous local decisions are critical for the emer-
gence of global patterns in scale free graphs, the effect
of the former can be evaluated on a macroscopic scale
through metrics like the F1 score and the receiver op-
erating characteristic (ROC). This work differentiates
itself from existing approaches by heavily focusing
on graph locality properties. The benchmark dataset
is represented in a Neo4j database and in fact it was
taken directly from the Neo4j developer site1.

The remaining of this work is structured as fol-
lows. In section 2 the recent scientific literature re-

1https://neo4j.com/developer/graph-data-science/link-
prediction/graph-data-science-library/



garding IAs, GSP, and graph mining strategies is
briefly overviewed. In section 3 the IA architecture
and its functionality are explained. The results ob-
tained by the proposed methodology are analysed in
section 4. Future research directions are given in sec-
tion 5. Bold capital letters denote matrices, small
boldface vectors, and small plain scalars. Function
parameters come with a semicolon after their argu-
ments. Technical acronyms are explained the first
time they are encountered in the text. Finally, nota-
tion is summarized in table 1.

2 PREVIOUS WORK

A major part of IA functionality (Moussawi et al.,
2023) is the interaction with their environment (Chi-
atti et al., 2022), especially for enhancing human dig-
ital awareness (Riedl, 2019). IA design elements in-
fluence among others user acceptance (Elshan et al.,
2022), seamless integration with various ML algo-
rithms (Kaswan et al., 2022), presentation to the fi-
nal user (Narumi et al., 2022), coordination with
other IAs (Nefla et al., 2022), and Web mining op-
timization (Yoon et al., 2022). IA applications in-
clude strategically searching LinkedIn for trusted can-
didates (Drakopoulos et al., 2020c), monitoring long
food supply chains (Pirsa et al., 2022), and digital
health (Chen et al., 2022). ML algorithms which have
been used by IAs are shown in table 2.

GSP is an emerging field where graphs are two-
dimensional signals from an irregular domain (Or-
tega, 2022) which can be combined with graph neu-
ral networks (GNNs) (Li et al., 2022a) or other ML
techniques (Shi and Moura, 2022) to extract knowl-
edge from graphs. Applications include cultural con-
tent recommendation based on affective attributes
(Drakopoulos et al., 2022), collaborative filtering (Liu
et al., 2023), the smart decompression of long graph
sequences (Drakopoulos et al., 2021a), graph recon-
struction with Sobolev smoothness (Giraldo et al.,
2022), GNNs for evaluating the affective coherence
of fuzzy (Drakopoulos et al., 2021b) and ordinary
(Drakopoulos et al., 2020a) Twitter graphs, transfer
learning between graphs (Ruiz et al., 2023), aprox-
imating directed graphs with undirected ones using
matrix polar factorization (Drakopoulos et al., 2021c),
ensemble learning (Shang et al., 2022), intelligent
fault diagnosis (Li et al., 2022b), probabilistic ap-
proximation of topological correlation (Drakopoulos
and Kafeza, 2020), multiscale learning (Zhao et al.,
2022), wide learning of massive graphs (Gao et al.,
2022), and community discovery on Twitter based on
multiple criteria (Drakopoulos et al., 2020b).

Graph mining is a broad field (Dong et al., 2023)
encompassing quite diverse research such as opin-
ion mining (Lin et al., 2022), enhanced ontolo-
gies (Drakopoulos et al., 2017), parallel graph pro-
cessing (Dai et al., 2022), face recognition (Bedre
and Prasanna, 2022), heuristic community discovery
(Drakopoulos and Mylonas, 2022), and finding inter-
related requirements in software architectures from
large texts (Singh, 2022).

3 INTELLIGENT AGENT DESIGN

The conceptual architecture of an IA is shown at fig-
ure 1. Notice how any IA can interact besides the
digital realm also with its physical environment by
accepting input, even incomplete or fuzzy depending
on the operational context, through a broad array of
available heterogeneous sensors depending on its con-
figuration such as light, atmospheric pressure, humid-
ity, acceleration, and electromagnetic field sensor to
name only a few. Therefore IAs can bridge the gap
between the physical and the digital realms.

According to the original Russel-Norvig classifi-
cation there are the following types of IAs:

• Simple reflex agents: They react to external stim-
uli but do not take into consideration any history.

• Model based reflex agents: They live in partially
observable environments and have state history.

• Goal based agents: They select among a set of
desirable goal states and make a course of actions.

• Utility based agents: They can quantify how de-
sirable a given state is and choose between them.

• Learning agents: They adapt and can dynami-
cally select actions leading to a desired goal.

The proposed IA clearly belongs to the fifth and
most general level of the above taxonomy. In semi-
supervised and unsupervised learning settings the
concept of state is paramount, since it codifies the
knowledge IA has for the environment and its past
interactions with it. Maintaining such information is
vital for an IA operating in the Web since the latter
is stateless by dsign. The state vector s as shown in
equation (1) is a column vector containing p state
variables which essentially reflect the configuration
of the proposed IA and they control its actions. In
this particular context, the p variables are the at-
tributes collected for each vertex shown later in this
section, suggesting thus that the IA trajectory and ac-
tions along a given graph rely on vector embeddings.

s 4=
[
h1 . . . hp

]T (1)



Table 1: Notation of this work.

Symbol Meaning First in
4
= Definition or equality by definition Eq. (1)
{s1, . . . ,sn} Set with elements s1, . . . ,sn Eq. (2)
|S| Set cardinality functional Eq. (2)
(u,v) Undirected edge between u and v Algo. 1
deg(u) Degree of vertex u Eq. (7)
Γ(u) Neighborhood of vertex u Eq. (6)
prob{Ω} Probability of event Ω occurring Eq. (14)

Table 2: Neural network architectures

Model Unsupervised Supervised Software
Autoencoder Yes No keras, H2O
Convolutional Deep Belief Network Yes Yes tensorflow, keras, H2O
Convolutional Neural Network Yes Yes tensorflow, fastai
Deep belief network Yes Yes theano, pytorch, tensorflow
Deep Boltzmann machine No Yes boltzmann-machines, pydbm
Denoising autoencoder Yes No tensorflow, keras
Long short-term memory No Yes keras, lasagne, BigDL, Caffee
Multilayer perception No Yes keras, sklearn, tensorflow
Recurrent neural network No Yes keras
Restricted Boltzmann machine Yes Yes pydbm, pylearn2, theanoLM

Current state
estimation

Environment

Actuators

Decision

Sensors

Decision history

State history

Figure 1: IA architecture.

The strategy of the proposed IA is outlined in sec-
tion 1. Its main loop ensures that each vertex is vis-
ited exactly once and that the local attribute vector is
taken into account. In many IA problems vertex visit
strategy is critical, but here a single visit suffices.

The predetermined set of actions can be repre-
sented as a set Ia as in (2). Notice that in general
depending on the current vertex and the agent state
not every action from the set Ia may be applicable or
even available. However, here only two actions are
available, namely collect vertex attributes and decide
whether a latent edge exists between the local edge
and one of its non-neighboring vertices.

Ia
4
= {a1, . . . ,an} , |Ia|= n (2)

For each action of (2) there is an associated posi-
tive cost, which in general depends on the functional
parameters of the IA and the environment, as well as
a related reward. In general both can depend on time,
but here this is omitted. Action costs and rewards are
represented also by two sets as in (3). Observe that Ia,
Ic, and Ir have the same cardinality.

Ic
4
= {c1, . . . ,cn} and Ir

4
= {r1, . . . ,rn} (3)

The most common figure of merit is the weighted
expected cost of the actions taken by the IA as shown
in (4). The exponentially forgetting factor γ0 essen-
tially stipulates that the effect of past errors tend to



Data: Input graph and IA parameters
Data: Set of termination conditions τ

Result: The predicted edges marked as such
start from a random vertex;
while τ is not satisfied do

collect local attributes of u;
foreach not connected vertex v do

collect local attributes of v;
create joint attributes of u and v;
if ML finds a latent (u,v) then

connect u and v with (u,v);
mark the above edge as new;

end
end

end
Algorithm 1: Proposed IA operation.

have a negligible effect on later steps.

Qe
4
=

q

∑
k=1

γ
k
0ck (4)

An alternative metric is the expected weighted re-
ward to cost ratio of IA as shown in equation (5).

Qr
4
=

q

∑
k=1

γ
k
0

rk

ck
(5)

Frequently the internal mechanics of an IA are
modeled as a finite state automaton (FSA) where the
transition between each possible state of the state vec-
tor s depends on the current vertex as well as on the
cost and rewards of the available actions. In this con-
text, the capacity and transitivity closure of this FSA
can be used as evaluation metrics of the complexity of
the underlying IA. Moreover, under the appropriate
conditions they may reflect the coding effort neces-
sary for creating the IA. The latter does not have to be
mandatorily implemented as an FSA, it only suffices
that its internal logic can be translated to one while
their implementation is determined by technological
levels and the intended IA functionality. For instance,
an IA may well be implemented as a rule-based sys-
tem for AI explainability and accountability purposes.

As FSAs are limited by bounded rationality phe-
nomena, a single IA may not be sufficient for certain
purposes, for example considerably suppressing or to-
tally preventing the functionality of a hostile IA. Such
scenarios typically require the cooperation of many
IAs for creating a distributed hive AI and are com-
monly modeled as games on graphs.

In this scenario, the performance metric of equa-
tion (5) is implicitly used with umiform unit costs for
either missing a latent edge between two vertices or
declaring that a non-existent edge exists.

3.1 Attributes

In order to train the algorithns determiming the ac-
tions and decisions of the proposed IA, a number of
graph structural metrics concerning vertex pairs are
used. These are also described in the GDSL Web site
of Neo4j2, namely its graph algorithms library.

• The common neighbors score hc (u,v) stemming
from the fundamental property of edge locality,
meaning the more neighbors two vertices share,
the more probable is that they are connected.

hc (u,v)
4
= |Γ(u)∩Γ(v)| (6)

• The preferential attachment score hp (u,v) relies
on the densification property of dynamic graphs
stating that the higher degree a vertex has, the
more probable it is to attract new neighbors.

hp (u,v)
4
= deg(u)deg(v) (7)

• The number of total neighbors hn (u,v) is also de-
rived from the above stated property but takes a
different approach by evaluating the joint poten-
tial of a vertex pair to attract new neighbors.

hn (u,v)
4
= deg(u)+deg(v) (8)

• The Adamic-Adar index ha (u,v) evaluates the in-
formation theoretic potential for connections of
the common graph segment between the two ver-
tices instead of focusing to the vertices.

ha (u,v)
4
= ∑

s∈Γ(u)∩Γ(v)

1
log |Γ(s)|

(9)

• The resource allocation metric hr (u,v) moves
along the similar line of reasoning and approxi-
mates the reciprocal of the number of connections
necessary to be established between them.

hr (u,v)
4
= ∑

s∈Γ(u)∩Γ(v)

1
|Γ(s)|

(10)

The attributes are collected using Cypher, the
ASCII art based query language of Neo4j which al-
lows access to every graph structural element. The
queries necessary for the IA to perform its task.

Instead of providing the learning algorithms with
the above attributes, they were given an averaged ver-
sion of them. Since different vertices have different
degrees, the harmonic mean of (11) is used:

h(u,v) 4=
deg(u)

∑s∈Γ(u)
1

h(s,v)

(11)

2https://neo4j.com/docs/graph-data-
science/current/algorithms/linkprediction/



The approach of (11) relies heavily on the locality
property of the graphs. In other words, it exploits the
fact that if v is connected to u, then it is probable that
it will be also reconnected to some of its neighbors.

3.2 Learning Algorithms

The algorithms employed by the IA are the follow-
ing. Notice they are common and readily available in
a broad spectrum of platforms.

• Random forest (RF).

• Decision tree (DT).

• Logistic regression (LR).
In addition to these ML algorithms, four feed for-

ward neural network (FFNN) architectures were also
employed by the IA to do link prediction.

• A p× 2p× 1 architecture where each layer uses
the SELU activation function and p is the number
of attributes as shown in equation (1) (NN1).

• A p× 5p× 1 architecture where each layer uses
the SELU activation function (NN2).

• A p× 2p× 2p× 1 where the input layer uses
RELU and the next ones SELU (NN3).

• A p× 5p× 5p× 1 where the input layer uses
RELU and the next ones SELU (NN4).
The scaled exponential linear unit (SELU) activa-

tion function3 has a flexible smooth form and can be
parameterized by a scaling factor β0 as shown in (12).

ψ(u;β0)
4
=

{
β0u, u ≥ 0
β0α0 (eu−1) , u < 0

(12)

The rectified linear unit (ReLU) activation func-
tion4 despite its seemingly simple form is very pop-
ular because of its adaptability and its easy interpre-
tation. Moreover, the lack of parameters significantly
reduces training complexity.

ϕ(u) 4=

{
u, u ≥ 0
0, u < 0

(13)

It should be noted that both SELU and RELU can
be easily found in many ML platforms.

4 RESULTS

Basic structural properties of the dataset obtained by
the Neo4j developer site are shown in table 3. In that

3www.tensorflow.org/api docs/python/tf/keras
/activations/selu

4https://keras.io/api/layers/activations

table positive examples refer to vertex pairs where a
latent edge exists, where negative ones refer to pairs
which are not actually linked. Observe that originally
there was a considerable imbalance between positive
and negative training examples and therefore random
downsampling took place.

Table 3: Dataset synopsis.

Property Value
Negative examples for training data 1580567
Positive examples for training data 105139
Negative examples downsampling 50085
Positive examples downsampling 50085

The benchmark dataset contains authors of scien-
tific papers and their publications over a range of sixty
years. In this scenario the objective of link prediction
is to discover and recommend potential co-authors in
order to boost scientific collaboration. In figure 2 the
number of papers entries is shown.

Communication between the Neo4j and the appli-
cation took place over py2neo, which is one of the
most popular Neo4j drivers for Python. It allows
sending dynamically formulated Cypher queries and
the reception of the results.

The results for each of the basic learning strate-
gies of RF, DT, and LR is shown in table 4. Therein
MAE and MSE denote mean absolute error and mean
squared error respectively. MSE is especially impor-
tant as it approximates the performance metric of (5).

Table 4: Performance metrics for the learning strategies.

Metric RF DT LR
Accuracy 0.963 0.963 0.936
Precision 0.965 0.962 0.947
Recall 0.960 0.964 0.924
MAE 0.037 0.037 0.064
MSE 0.037 0.037 0.064
F1 0.963 0.963 0.935

Observe that among these algorithms RF outper-
forms, even by a small margin, the other two. This can
be partly at least attributed to its robustness to outliers
and to its averaging nature which typically ensures a
more than adequate performance in ML settings.

The receiver operating characteristic (ROC) of an
ML model is defined as a way to obtain the probability
that the ranking r (·) of any pair of patterns y and y′

where y < y′ is preserved under that model, namely
r (y) < r (y′). Specifically, the area D under the ROC
curve yields this probability. This yields (14).

D 4
= prob

{
r (y)< r

(
y′
)
| y < y′

}
(14)

In figure 3 the ROC curves for the four FFNN
architectures is shown. With the exception of NN1,



Figure 2: Entries per year.

the remaining three architectures achieve comparable
performance. This can be explained by the fact that
NN2, NN3, and NN4 have more processing neurons
than NN1, allowing thus the discovery of more graph
structural patterns, especially those of higher order as
graphs are inherently distributed by nature and infor-
mation is typically not found in a single vertex but
instead it is locally spread.

5 CONCLUSIONS

This conference paper focuses on inteligent agent
(IA) design utilizing machine learning (ML) tech-
niques for link prediction. The benchmark dataset is
a graph containing collaborations between scientists.
Therefore, in this setting link prediction can discover
and recommend potential co-authors, enhancing thus
research. The proposed IA uses an array of ML strate-
gies including random forest, decision tree, logistic
regression, and neural networks. These were trained
with graph structural attributes describing the poten-
tial of a pair of vertices to attract new neighbors as the
higher this potential is, the more probable the vertex
pair under consideration is to be connected. These
attributes include preferential attachment, Adamic-
Adar index, and resource allocation metric.

This work can be extended in a number of ways.
First and foremost, the IA can be tested in larger
graphs which have a greater variety of structural pat-
terns. Moreover, more ML algorithms can be applied
to the same local attributes. Alternatively, the entire
graph can be used in ML algorithms natively support-
ing two-dimensional data such as matrices and images
in order to address the link prediction problelm using

local and global patterns.
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